首页|基于证据图推理的文档级实体关系抽取

基于证据图推理的文档级实体关系抽取

扫码查看
[研究目的]为缓解文档级实体关系抽取任务中存在的句子噪声问题,提高文档级实体关系抽取性能,提出一种基于证据图推理的文档级实体关系抽取方法,为文档级实体关系抽取和知识发现研究提供参考.[研究方法]通过启发式规则捕获实体对间关系推理所需证据句路径信息;引入图结构学习思想将证据句路径信息融入异构文档图;基于关系图卷积网络进行关系推理以提升文档图对证据句信息的聚合能力;采用前馈神经网络对实体关系进行预测,实现文档级实体关系高效抽取.[研究结论]所提出的模型在国际公开文档级评测数据集CDR和GDA上F1值分别达到71.3%和85.4%,较基准模型EIDER提高1.2%与1.1%.实验结果表明该方法能够有效选择实体关系推理所需证据路径,提升文档级实体关系抽取性能.
Document-Level Entity Relation Extraction Based on Evidence Graph Reasoning
[Research purpose]To alleviate the sentence noise problem in the document-level entity relation extraction task and improve the extraction performance,we propose a document-level entity relation extraction method based on evidence graph reasoning,which of-fers valuable insights for research on document-level entity relation extraction and knowledge discovery.[Research method]Firstly,we capture the evidence sentence path information required by reasoning of relations between entity pairs through heuristic rules.Secondly,we incorporate the evidence sentence path information into the heterogeneous document graph based on graph structure learning ideas.Next,relational reasoning is performed using relational graph convolutional networks to enhance the document graph's ability to aggregate evi-dence sentence information.Finally,relation extraction results are predicted with the help of feed-forward neural networks.[Research conclusion]The model proposed in this paper achieves F1 values of 71.4%and 85.4%on the international public document-level evalu-ation datasets CDR and GDA,respectively,which are 1.2%and 1.1%higher than the benchmark model EIDER.Experimental results demonstrate that the approach presented in this paper can effectively select evidence paths required for entity relation reasoning,thereby en-hancing the performance of document-level relation extraction.

document-level entity relation extractionevidence reasoning pathsgraph neural networkheuristic rulesknowledge dis-covery

张钰、王嘉、袁建园、张益嘉

展开 >

大连理工大学马克思主义学院 大连 116024

大连海事大学信息科学技术学院 大连 116026

文档级实体关系抽取 证据推理路径 图神经网络 启发式规则 知识发现

辽宁省社会科学规划基金

L20BTQ008

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(7)
  • 35