首页|多维视角下新一代人工智能技术的公众感知研究

多维视角下新一代人工智能技术的公众感知研究

扫码查看
[研究目的]社交媒体评论是分析研判公众对新技术应用态度感知的重要对象,为突破传统文本主题挖掘技术的随机性弊端以及情感分析技术的单一性限制,提升文本数据量化分析的精准性以及实现更佳的可视化效果,亟需构建新的主题模型方法与情感分析手段.[研究方法]通过建立结构性融合的深度学习模型——BERT-LDA模型,以ChatGPT微博评论文本为研究对象,利用BERT和LDA分别提取文本的复杂语义信息和关键主题,实现了对深度隐藏主题特征的挖掘,并基于BERT情感分析,从整体、主题和态度多维度视角设计了情感演化的可视化分析.[研究结论]研究表明,BERT-LDA模型能够高效处理大规模、短文本、非结构的社交媒体评论数据,成功识别出公众对ChatGPT在就业教育、未来发展、产品开发、技术变革等不同领域带来影响的态度差异;与传统主题识别模型(LDA、TF-IDF、BERT)相比,BERT-LDA模型在主题识别效果和泛化能力上表现更优,尤其体现在对关键主题和重要词汇的精准挖掘能力上;公众对ChatGPT的认知态度并不统一,表现出赞誉与质疑并存的复杂情绪.
Public Perception of New Generation Artificial Intelligence Technology from a Multidimensional Perspective
[Research purpose]Social media comments are a vital source for analyzing public perception towards new technological appli-cations.To overcome the randomness flaw in traditional topic mining techniques and the limitations of singular sentiment analysis methods,there is an urgent need to develop new topic model approaches and sentiment analysis tools.These advancements aim to enhance the preci-sion of text data quantitative analysis and achieve better visualization effects.[Research method]By developing a structurally integrated deep learning model,the BERT-LDA model,which combines BERT and LDA,this study focuses on ChatGPT's social media comments.It utilizes BERT and LDA to extract complex semantic information and key topics from texts,enabling the discovery of deeply hidden the-matic features.Furthermore,based on BERT sentiment analysis,this research designs a multi-dimensional visualization analysis of senti-ment evolution from overall,thematic,and attitudinal perspectives.[Research conclusion]The findings reveal that:the BERT-LDA model efficiently processes large-scale,short-text,unstructured social media comment data,successfully identifying public attitudes to-wards ChatGPT's impact across various domains such as employment,education,future development,product innovation,and technologi-cal transformation.Compared to traditional models like LDA and TF-IDF,the BERT-LDA model demonstrates superior topic identifica-tion and generalization capabilities,particularly in accurately mining key topics and important terms.Public attitudes towards ChatGPT are not uniform,exhibiting a complex mixture of praise and skepticism.

artificial intelligenceChatGPTWeibocomment texttopic miningsentiment analysispublic perceptionBERT-LDA model

聂思言、杨江华

展开 >

西安交通大学人文社会科学学院 西安 710049

人工智能 ChatGPT 微博 评论文本 主题挖掘 情感分析 公众感知 BERT-LDA模型

国家社会科学基金一般项目

20BSH149

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(9)
  • 16