首页|基于对比学习的高价值发明专利识别——以无线通信网络领域为例

基于对比学习的高价值发明专利识别——以无线通信网络领域为例

扫码查看
[研究目的]在众多专利中准确高效识别高价值发明专利,不仅对中国知识产权战略实施具有推动作用,还有助于促进高价值发明专利的技术转化.[研究方法]针对领域专利文本利用不充分的问题,对使用Bert在无线通信网络领域专利文本上进行对比学习预训练,得到领域适应的Bert模型.然后,利用领域适应的Bert模型训练高价值发明专利识别模型,并在高价值发明专利识别模型的训练过程中使用过采样策略缓解正负样本不均衡的问题,改善模型的效果.[研究结论]在包含62 000份无线通信网络中国发明专利数据集上的实验结果显示,使用对比学习和过采样策略训练得到的模型在Accuracy指标值和Macro-F1指标值上分别达到了 97%和0.93,相比于直接使用Bert分别提升了 9.77%和0.19.
High-Value Invention Patent Identification Based on Contrastive Learning:Taking the Field of Wireless Communication Network as an Example
[Research purpose]Accurately and efficiently identifying high-value invention patents among numerous patents not only pro-motes the implementation of China's intellectual property strategy,but also helps to encourage the technological transformation of high-value invention patents.[Research method]Firstly,in response to the issue of insufficient utilization of domain patent texts,Bert is pre-trained through contrastive learning of wireless communication network domain patent texts to obtain a domain adapted Bert model.Then,a domain adapted Bert model is used to train a high-value invention patent recognition model,and an oversampling strategy is used in the training process of the high-value invention patent recognition model to alleviate the problem of imbalanced positive and negative samples and improve the effectiveness of the model.[Research conclusion]The experimental results on a dataset containing 62 000 Chi-nese invention patents for wireless communication networks show that the models trained using contrastive learning and oversampling strate-gies achieve 97%and 0.93 Accuracy and Macro-Fl index values respectively,increased by 9.77%and 0.19 respectively compared to the direct use of Bert.

high-value patentspatent identificationpatent textspatent value evaluationcontrastive learningwireless communication network

薛航、施国良、陈挺

展开 >

河海大学商学院 南京 211100

高价值发明专利 专利识别 专利文本 专利价值评估 对比学习 无线通信网络

中央高校基本业务费项目

B200207036

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(9)
  • 12