首页|面向复杂网络舆情知识发现的事理图谱方法优化

面向复杂网络舆情知识发现的事理图谱方法优化

扫码查看
[研究目的]优化事理图谱构建方法,提升事理图谱工具在非结构化网络舆情数据中的知识发现能力,能更好挖掘复杂网络舆情事件内部的因果关系和演化路径.[研究方法]研究采用RoBERTa预训练模型进行序列标注以取代传统模式匹配方法,引入Word2Vec词向量和BERTopic主题模型取代传统机器学习聚类算法,对知乎平台"硅谷银行破产"网络舆情进行实证分析.[研究结论]结果表明,融合深度学习与序列标注的因果关系抽取在114 901个上下文中识别到68 613条原始因果事件对,相较模式匹配方法高出46.47%;基于词向量与主题聚类模型的事件泛化将2 148个代表事件划归为14个主题,在文本特征和语义特征层面的泛化效果优于K-means算法.该文依据优化方法构建的网络舆情事理图谱围绕核心主题呈现"循环型""紧密型""长链型"的演化路径特征,构建流程和分析过程可为网络舆情治理提供工具及决策支持.
Optimization of Event Evolutionary Graph Method for Complex Online Public Opinion Knowledge Discovery
[Research purpose]Optimizing the event evolutionary graph construction method can enhance the knowledge discovery ability of the event evolutionary graph tool in unstructured online public opinion data,and it can better explore the causal relationship and evolu-tionary path within complex online public opinion events.[Research method]The study adopts RoBERTa pre-training model for se-quence labeling to replace the traditional pattern matching method,introduces Word2 Vec and BERTopic to replace the traditional machine learning clustering algorithm,and empirically analyzes the online public opinion of"Silicon Valley Bankruptcy"on Zhihu.[Research conclusion]The results show that causal extraction integrating deep learning and sequence labeling identifies 68 613 original causality in 114 901 contexts,which is 46.47%higher than the pattern matching method;event generalization based on word vector and topic cluste-ring model classifies 2 148 representative events into 14 topics,which outperforms the generalization effect at the level of textual and se-mantic features than the K-means algorithm.The research constructs an online public opinion event evolutionary graph based on the opti-mization method,which presents the characteristics of"cyclic""tight"and"long-chain"evolutionary paths around the core topics,and the construction process and analysis process can provide tools and decision support for online public opinion management.

online public opinionevent evolutionary graphknowledge discoverydeep learningsequence labelingtopic clustering

肖亚龙、冯皓、朱承璋、冯杰

展开 >

中南大学人文学院 长沙 410012

中南大学人文学院智媒传播研究中心 长沙 410012

网络舆情 事理图谱 知识发现 深度学习 序列标注 主题聚类

教育部人文社会科学基金青年项目湖南省哲学社会科学基金青年项目湖南省哲学社会科学基金一般项目

22YJC86000721YBQ01023YBA019

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(10)