首页|基于多维度特征融合的信息热度预测研究——以校园信息平台为例

基于多维度特征融合的信息热度预测研究——以校园信息平台为例

扫码查看
[研究目的]面对校园信息平台中出现的信息过载情况,用户如何从海量信息中发现和获取热点信息成为了急需解决的问题.[研究方法]为了更准确地捕捉和预测信息的真实热度,提出了一种基于多维度特征融合的信息热度预测模型MIHP.该模型不仅考虑文本内容的分析,而且将非文本特征的提取和分析纳入算法流程中.通过这种多维度的特征融合,模型能够更全面地评估信息的吸引力和传播潜力,从而更准确地反映信息的真实热度.[研究结论]在校园信息平台数据集上的实验结果表明,MIHP模型优于其他基线模型,为信息热度预测提供了新的解决思路.
Research on Information Popularity Prediction Based on Multi-Dimensional Feature Fusion:A Case Study of Campus Information Platforms
[Research purpose]In the face of information overload on campus information platforms,how users can discover and obtain hotspot information from a vast amount of data has become an urgent problem.[Research method]To more accurately capture and pre-dict the real popularity of information,this study proposes an information popularity prediction model MIHP based on multi-dimensional feature fusion.This model not only considers the analysis of text content but also incorporates the extraction and analysis of non-text fea-tures into the algorithm process.Through this multi-dimensional feature fusion,the model can more comprehensively assess the attractive-ness and potential for dissemination of information,thereby more accurately reflecting the real popularity of the information.[Research conclusion]Experimental results conducted on the campus information platform dataset show that the MIHP model outperforms other base-line models,providing a new solution for information popularity prediction.

information popularitymulti-dimensional feature fusionattention mechanismcampus information platformpopularity pre-diction model

王龙、黄嘉凯、逄华、李晓光

展开 >

辽宁大学信息学院 沈阳 110036

沈阳师范大学数学与系统科学学院 沈阳 110034

信息热度 多维度特征融合 注意力机制 校园信息平台 热度预测模型

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(12)