首页|融合注意力机制的残差型双向LSTM汽车电机轴承诊断

融合注意力机制的残差型双向LSTM汽车电机轴承诊断

扫码查看
为保障汽车的安全行驶,准确诊断和监测电机轴承故障,该文提出一种融合注意力机制的残差型双向长短期记忆网络(LSTM)汽车电机轴承故障诊断方法.利用特征提取模块结合正反向移动的LSTM组以充分感知汽车电机轴承故障特征;信号诊断模块采用残差型双向LSTM架构,并结合局部增强注意力机制优化权值,获得隐藏状态量;通过故障分类模块采用全局平均池化(GAP)方法与SoftMax模型,有效完成故障检测.结果表明:该方法汽车电机轴承故障检测准确率可达93.1%;在训练样本仅为30的条件下,准确率可达66.3%;当测试集的信噪比从10 dB降低至2 dB时,准确率仅下降8.5%.因此,该方法具有更高的准确性和更强的鲁棒性.
Diagnosis of residual bidirectional LSTM automotive motor bearings with attention mechanism
In order to ensure the safe driving of vehicles and accurately diagnose and monitor motor bearing faults,this paper proposed an automotive motor bearing fault diagnosis method based on residual bidirectional Long Short-Term Memory(LSTM)network with attention mechanism.The feature extraction module combined LSTM groups that move in both forward and backward directions to fully perceive the fault features of automotive motor bearings.The signal diagnosis module adopted a residual bidirectional LSTM architecture and combined the local enhanced attention mechanism to optimize the weights and obtain the hidden state quantity.Global average pooling(GAP)method and SoftMax model are used in fault classification module to effectively detect faults.The results show that the detection accuracy of this method for automotive motor bearing fault detection reaches 93.1%.Under the condition of only 30 training samples,the accuracy reaches 66.3%.When the signal-to-noise ratio of the test set decreases from 10 dB to 2 dB,the accuracy only drops by 8.5%.Therefore,the proposed method has higher accuracy and stronger robustness.

vehicle safetymotor bearingsfault diagnosisattention mechanismfeature extractionaccuracy ratesignal-to-noise ratio

姜健、王平

展开 >

绵阳职业技术学院,绵阳 621000,中国

兰州理工大学 电气工程与信息工程学院,兰州 730050,中国

汽车安全 电机轴承 故障诊断 注意力机制 特征提取 准确率 信噪比

国家自然科学基金资助项目甘肃省工业过程先进控制重点实验室开放基金

623610392022KX02

2024

汽车安全与节能学报
清华大学

汽车安全与节能学报

CSTPCD北大核心
影响因子:0.748
ISSN:1676-8484
年,卷(期):2024.15(4)