首页|基于混合深度强化学习的ICV任务卸载与资源分配

基于混合深度强化学习的ICV任务卸载与资源分配

扫码查看
随着智能网联车辆(ICV)技术的发展,计算资源有限的ICV面临计算需求大幅增加的问题。ICV可以通过路侧单元(RSU)将任务卸载到移动边缘计算(MEC)服务器上。然而,车联网环境的动态性和复杂性使任务卸载和资源分配变得极具挑战。本文提出在环境和资源的约束下,通过控制任务卸载决策、通信功率和计算资源分配,最小化任务计算能耗。针对这一问题离散和连续控制变量共存的特性,设计了混合深度强化学习(HDRL)算法:利用双深度Q网络(DDQN)生成任务卸载决策,利用深度确定性策略梯度(DDPG)生成通信功率和MEC资源分配决策,并结合改进的优先级经验回放(IPER)机制来评估和选择动作,输出最优策略。仿真实验结果表明,该方法比对比算法具有更快更稳定的决策收敛性,实现了任务计算卸载的最小能耗,并能有效适应ICV数量和任务大小的变化,具有高实时性和良好环境适应性。
ICV Task Offloading and Resource Allocation Based on Hybrid Deep Reinforcement Learning
With the development of Intelligent Connected Vehicle(ICV)technology,ICVs with limited computing resources face the problem of significantly increased computational demand.ICVs can offload tasks to Mobile Edge Computing(MEC)servers via Roadside Units(RSU).However,the dynamic and complex nature of vehicular networks makes task offloading and resource allocation highly challenging.In this paper,it is proposed to minimize task computing energy consumption by controlling task offloading decision,communication power,and computing resource allocation under environmental and resource constraints.To address the coexistence of discrete and continuous control variables in the problem,a Hybrid Deep Reinforcement Learning(HDRL)algorithm is de-signed.The algorithm employs the Double Deep Q-Network(DDQN)to generate task offloading decisions and the Deep Deterministic Policy Gradient(DDPG)to determine communication power and MEC resource allocation.Fur-thermore,an Improved Prioritized Experience Replay(IPER)mechanism is integrated to evaluate and select ac-tions,outputting the optimal strategy.Simulation results show that the method achieves faster and more stable deci-sion convergence than comparative algorithms,minimizes the energy consumption for task computation offloading,and effectively adapts to changes in the number of ICVs and task sizes,demonstrating high real-time performance and excellent environmental adaptability.

mobile edge computingdeep reinforcement learningtask offloadingresource allocationpriority experience replay

刘佳慧、邹渊、孙巍、孟逸豪、路潇然、李圆圆

展开 >

北京理工大学机械与车辆学院,北京 100081

北京理工大学,电动车辆国家工程研究中心,北京 100081

移动边缘计算 深度强化学习 任务卸载 资源分配 优先经验回放

2025

汽车工程
中国汽车工程学会

汽车工程

北大核心
影响因子:0.751
ISSN:1000-680X
年,卷(期):2025.47(1)