首页|燃料电池氢气系统自适应滑模解耦控制研究

燃料电池氢气系统自适应滑模解耦控制研究

扫码查看
有效的燃料电池氢气系统控制策略可以改善系统动态性能并延长使用寿命,本文针对循环泵型燃料电池氢气系统,提出了基于梯度寻优的自适应滑模解耦控制策略。首先基于Simulink搭建了燃料电池氢气系统模型,基于该模型设计了解耦滑模控制器在补偿模型精度不准的同时实现了流量和压力的解耦,并通过李雅普诺夫原理证明了反馈控制率的稳定性。然而,滑模控制存在动态响应性能和抖振相矛盾的问题,对此,本研究进一步设计了基于梯度下降的滑模控制参数自适应寻优方法,并通过前馈控制器提高变载时的系统稳定性,同时采用滑模调优参数Map自学习的方式,在保证闭环系统稳定的同时解决了瞬态工况下的梯度寻优延迟问题。结果表明:本文设计的结合前馈的自适应滑模解耦控制器超调量较小,响应时间较短,鲁棒性较高;阴阳极压差最大值约为0。01 bar,流量供给误差最大为0。015 g/s;能够在0。02 s内迅速响应变载运行时氢气压力和流量的变化需求;相比于前馈修正之前,电堆启动工况下的压力波动降低了0。122 bar;扰动作用下,系统稳定性保持良好,氢气压力波动最大为0。01 bar。
Research on Adaptive Sliding Mode Decoupling Control of FC Hydrogen System
An effective control strategy for fuel cell hydrogen systems can improve system dynamic perfor-mance and extend service life.In this paper,an adaptive sliding mode decoupling control strategy based on gradient optimization is proposed for circulating pump fuel cell hydrogen systems.Firstly,a fuel cell hydrogen system model is built based on Simulink.Based on this model,a decoupled sliding mode controller is designed to compensate for inaccurate model accuracy while achieving decoupling of flow and pressure.The stability of the feedback control rate is demonstrated through Lyapunov principle.However,sliding mode control has the problem of conflicting dynamic response performance and chattering.In response to this,in this study a gradient descent based sliding mode control parameter adaptive optimization method is further designed,and the system stability under variable loads is im-proved through a feedforward controller.At the same time,the sliding mode optimization parameter MAP self-learn-ing method iss adopted to solve the gradient optimization delay problem under transient conditions while ensuring the stability of the closed-loop system.The results show that the adaptive sliding mode decoupling controller com-bined with feedforward designed in this paper has small overshoot,short response time,and high robustness.The maximum pressure difference between the anode and cathode is about 0.01 bar,and the maximum flow supply error is 0.015 g/s,which is capable of quickly responding to changes in hydrogen pressure and flow rate during variable load operation within 0.02 seconds.Compared to that before feedforward correction,the pressure fluctuation during the start-up condition of the fuel cell stack has decreased by 0.122 bar.Under disturbance,the system stability re-mains good,and the maximum fluctuation of hydrogen pressure is 0.01 bar.

fuel cellsliding model controldecoupling controlgradient declinefeedforward control

朱仲文、程谭龙、江维海、周定华、李丞、季传龙

展开 >

合肥工业大学汽车工程技术研究院,合肥 230009

燃料电池 滑模控制 解耦控制 梯度下降 前馈控制

2025

汽车工程
中国汽车工程学会

汽车工程

北大核心
影响因子:0.751
ISSN:1000-680X
年,卷(期):2025.47(1)