首页|基于三层加权堆叠模型的电动汽车剩余里程预测

基于三层加权堆叠模型的电动汽车剩余里程预测

扫码查看
为实现电动汽车剩余里程准确预测,本文提出一种基于三层加权堆叠模型的电动汽车剩余里程预测方法。结合最大信息系数和斯皮尔曼系数作为变量评价准则,使用最小冗余最大相关算法从候选特征集中优化得到输入特征集。构建考虑原始训练特征的三层堆叠模型,并利用贝叶斯优化算法得到堆叠模型中基模型权重。最后,使用输入特征集对三层加权堆叠模型训练并实现电动汽车剩余里程预测,结果表明所述三层加权堆叠模型的预测精度较高。此外,与其他模型相比,所述堆叠三层加权模型的泛化能力更强。
Electric Vehicle Remaining Range Prediction with a Three-Layer Weighted Stacking Model
To achieve accurate prediction of electric vehicle remaining range,a method based on a three-layer weighted stacking model for predicting remaining range of electric vehicles is proposed in this paper.By com-bining the maximal information coefficient and Spearman correlation coefficient as criteria for variable evaluation,the minimum redundancy maximum relevance algorithm is employed to optimize and obtain the input feature set from the candidate features.A three-layer stacking model that incorporates the original training features is then con-structed,and Bayesian optimization algorithm is used to determine the weights of the base models within the stack-ing model.Finally,the input feature set is used to train the three-layer weighted stacking model and realize electric vehicle remaining range prediction.The results show that the proposed three-layer weighted stacking model has high prediction accuracy and,compared to other models,with stronger generalization capabilities.

electric vehiclemRMR algorithmStacking modelremaining range

石琴、侯伟路、张晓楠、吴为教、贺泽佳

展开 >

合肥工业大学汽车与交通工程学院,合肥 230009

合肥工业大学自动驾驶车辆安全技术安徽省重点实验室,合肥 230009

安徽省智慧交通车路协同工程研究中心,合肥 230009

电动汽车 mRMR算法 Stacking模型 剩余里程

2025

汽车工程
中国汽车工程学会

汽车工程

北大核心
影响因子:0.751
ISSN:1000-680X
年,卷(期):2025.47(1)