基于应力分布的轮地相互作用纵滑模型
Tire-Deformable Terrain Interaction Model for Longitudinal Slip Based on Stress Distribution
卢荡 1王晓凡 1吴海东1
作者信息
- 1. 吉林大学 汽车工程学院,长春 130022
- 折叠
摘要
松软路面条件下,轮地接触界面应力分布随滑转和沉陷的变化规律较复杂,难以进行轮胎模型的合理表达.基于有限元进行了定沉陷量条件下的轮胎纵向滑转/滑移仿真,探明了轮地接触界面应力分布特性随滑转/滑移程度的变化规律,发现在不同滑移率下应力分布呈现3种特性,分别对应滑转、小程度滑移和大程度滑移状态.通过模拟压陷、剪切试验获得土壤特性参数,建立了适用于3种滑转/滑移状态的应力分布模型,以此为基础进一步建立了轮地相互作用纵滑模型,对松软路面上的轮胎面内特性有较好的表达效果.
Abstract
Stress distribution at the tire-ground contact interface on soft terrain becomes increasingly complex under the influence of tire slip and sinkage,making it difficult to accurately model tire behavior.Using finite element analysis,the paper simulated tire longitudinal slip/skid under constant sinkage conditions.The variation in stress distribution at the tire-ground contact interface was investigated as the slip/skid degree changed.The results show three distinct stress distribution patterns corresponding to slip,small skid and large skid states,respectively.Soil characteristic parameters were obtained through simulating sinkage and shear tests,and the stress distribution model was established for the three slip/skid states.On this basis,the tire-deformable terrain interaction model for longitudinal slip was further developed,which effectively represents the in-plane characteristics of tires on soft terrain.
关键词
地面力学/越野车辆/轮胎模型/轮地相互作用/应力分布Key words
terramechanics/off-road vehicle/tire model/tire-terrain interaction/stress distribution引用本文复制引用
出版年
2024