首页|基于时空注意力机制的网约车出行需求预测模型

基于时空注意力机制的网约车出行需求预测模型

扫码查看
解决网约车运营中的乘客出行需求预测问题,以降低车辆空载率、减少乘客等待时间。在考虑乘客出行需求的动态时空依赖性的基础上,提出一种基于空间数据可视化和格兰杰因果检验的乘客出行需求空间依赖性分析方法,并结合卷积神经网络和注意力机制,建立了一种基于注意力机制的时空图卷积神经网络模型来预测乘客出行需求。实例研究表明,本模型能有效捕获乘客出行需求时空依赖性的动态特征,提升模型的预测性能,具有较高的准确性和实用性。
A Travel Demand Prediction Model for Ride-Hailing Services Based on Spatio-Temporal Attention Mechanism
The paper aims to solve the problem of forecasting passenger travel demand in e-hailing car operations,thereby reducing vehicle idle rates and minimizing passenger waiting times.Considering the dynamic spatiotemporal dependencies of passenger travel demand,this study proposes a method based on spatial data visualization and the Granger causality test for analyzing the spatial dependency.A spatiotemporal graph convolutional neural network model incorporating attention mechanisms is established to predict passenger travel demand.The case study shows that this model effectively captures the dynamic characteristics of the time-space dependencies of passenger travel demand,improves the prediction performance of the model,and achieves high accuracy and practicability.

travel demand forecastingattention mechanismspatiotemporal dependenceattention based spatial temporal graph convolutional networks

王宁、马洪恩

展开 >

同济大学 汽车学院,上海 201804

出行需求预测 注意力机制 时空依赖性 时空图卷积神经网络

同济大学学科交叉联合攻关项目

2023-4-YB-04

2024

汽车工程学报
中国汽车工程研究院股份有限公司

汽车工程学报

CSTPCD
影响因子:0.35
ISSN:2095-1469
年,卷(期):2024.14(5)
  • 8