首页|基于充电健康因子优化和数据驱动的锂电池剩余使用寿命预测

基于充电健康因子优化和数据驱动的锂电池剩余使用寿命预测

扫码查看
针对因选取的健康因子不理想导致锂电池剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于充电健康因子优化和数据驱动的电池RUL预测方法,首先提取电池充电过程中的各种健康因子,再使用两步最大信息系数法优化特征子集得到优化的健康因子,最后使用带有注意力机制的时间卷积神经网络(ATCN)预测电池的剩余使用寿命,通过对美国国家航空航天局(NASA)锂电池老化数据的研究,验证了所提出的锂电池RUL预测框架,并与简单循环神经网络(SimpleRNN)、长短期记忆(LSTM)神经网络和门控循环单元(GRU)神经网络等建模方法进行比较,结果表明,所提出的方法在各数据集上均取得了最优的预测结果。
A Data-Driven Remaining Useful Life Prediction Approach for Lithium-Ion Batteries Based on Charging Health Feature Optimization
The Remaining Useful Life(RUL)prediction accuracy of lithium battery is not high because the selected health factors are not ideal.To solve this problem,this paper proposed a data-driven remaining useful life estimation approach for lithium-ion batteries based on charging health feature optimization.Firstly different health factors were selected in the battery charging process,then,a two-step feature selection method based on maximum information coefficient was used to obtain optimal health factors.Finally,the Attention Temporal Convolutional Network(ATCN)mechanism was used to predict the remaining useful life of the battery.The proposed lithium battery RUL prediction framework was validated by a study of NASA's lithium battery aging data and compared with other modeling methods including Simple Recurrent Neutral Network(SimpleRNN),Long Short Term Memory(LSTM)neutral network and Gate Recurrent Unit(GRU)neutral network.The experimental results indicate the proposed method has achieved optimal prediction results in all the datasets.

Lithium-ion batteryRemaining Useful Life(RUL)Two step maximal information coefficientTemporal Convolutional Network(TCN)Attention mechanism

段慧云、夏威、邵杰、汪洋青、李彬

展开 >

九江职业技术学院,九江 332007

武汉理工大学,武汉 430070

上汽通用五菱汽车股份有限公司,柳州 545005

锂离子电池 剩余使用寿命 两步最大信息系数 时间卷积神经网络 注意力机制

江西省教育厅科技项目

204013

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(1)
  • 16