首页|基于单颗粒锂扩散模型的锂离子电池SOC估算方法改进与在线监测研究

基于单颗粒锂扩散模型的锂离子电池SOC估算方法改进与在线监测研究

扫码查看
为提高动力电池荷电状态(SOC)的预测精度,基于单颗粒锂扩散模型对锂离子电池SOC的传统安时积分估算法进行改进,利用LabVIEW软件编写了电池SOC估算的传统和改进安时积分法求解程序以及电池数据采集通信接口程序,在不同环境温度和工作电流下,分别采用传统和改进安时积分法对电池SOC进行了在线监测。结果表明,在上述充放电工况下,改进方法和传统安时积分法的最大估算误差分别为1。11%和1。89%,且在放电电流变化剧烈时改进方法得到的电池SOC估算结果波动更小。
Improvement of SOC Estimation Method and On-Line Monitoring for Lithium-Ion Batteries Based on Single-Particle Li Diffusion Model
In order to improve the prediction accuracy of State Of Charge(SOC)of power batteries,this paper proposed a method to improve the traditional ampere-hour intergral method to estimate the SOC of the lithium-ion battery based on a single particle Li diffusion model.The solver programs for estimating SOC with traditional and improved ampere-hour integration method and communication interface programs for battery data acquisition were written in software LabVIEW,which achieved the on-line monitoring of the battery SOC under different environmental temperatures and currents by the two methods.The results show that,under the above discharging conditions,the maximum estimation errors of the improved method and the traditional ampere-hour integral method are 1.11%and 1.89%,respectively.When the discharge current changes dramatically,the battery SOC estimated by the improved method fluctuates less than the traditional ampere-hour integral method.

Lithium-ion batteriesState Of Charge(SOC)Diffusion modelAmpere-hour integration method

陶马峰、赵剑坤、杨乃兴、庄云萧、张高凡

展开 >

西安建筑科技大学,机电工程学院,西安 710055

西安建筑科技大学,陕西省纳米材料与技术重点实验室,西安 710055

锂离子电池 荷电状态 扩散模型 安时积分法

陕西省自然科学基金项目陕西省自然科学基金项目陕西省教育厅科技项目

2023-JC-YB-3222023-JC-YB-313S202210703148

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(2)
  • 13