首页|无人驾驶车辆路径跟踪混合控制策略研究

无人驾驶车辆路径跟踪混合控制策略研究

扫码查看
针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出 一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略.该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控制算法进行路径跟踪控制,在此基础上设计基于有限状态机(FSM)的控制算法切换机制,并通过遗传算法(GA)对控制参数进行优化,基于CarSim和MATLAB/Simulink仿真平台对混合控制策略进行仿真验证,并进一步完成了实车试验.试验结果表明,所设计的混合控制策略能够在提高跟踪精度的基础上缩短计算时间,与单一控制算法相比,平均横向误差和平均航向误差分别减小了 26.3%和39.6%,平均计算时间缩短了 10.9%.
Research on Hybrid Control Strategy for Path Tracking of Autonomous Vehicles
F or the fact that single control algorithm cannot simultaneously meet the requirements of autonomous vehicles for path tracking accuracy and controller solving speed,this paper proposed a hybrid control strategy based on Linear Quadratic Regulator(LQR)and Model Predictive Control(MPC).The strategy used an LQR in the low-speed condition and an MPC algorithm in the high-speed condition,on the basis of which a switching mechanism of the control algorithm based on a Finite State Machine(FSM)was designed and the control parameters were optimized by Genetic Algorithm(GA).The hybrid control strategy was simulated and verified based on CarSim and MATLAB/Simulink simulation platforms,and the real vehicle test was further completed.The experimental results show that the designed hybrid control strategy can reduce the computation time on the basis of improving the tracking accuracy,and the average lateral error and average heading error are reduced by 26.3%and 39.6%,respectively,and the average computation time is reduced by 10.9%compared with the single control algorithm.

Path trackingLinear Quadratic Regulator(LQR)Model Predictive Control(MPC)Finite State Machine(FSM)Genetic Algorithm(GA)

李兆凯、刘新宁、彭国轩、孙雪、陈涛

展开 >

长安大学,西安 710018

路径跟踪 线性二次型调节器 模型预测控制 有限状态机 遗传算法

国家自然科学基金面上项目

51978075

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(3)
  • 21