首页|基于GA-PSO的智能汽车横向LQR控制器优化设计

基于GA-PSO的智能汽车横向LQR控制器优化设计

扫码查看
针对线性二次型调节器(LQR)在智能汽车横向控制中,系数矩阵Q和R选取困难导致的控制精度低和参数整定效率低的问题,提出了一种遗传粒子混合优化(GA-PSO)方法。基于车辆二自由度模型设计了横向LQR控制器和前馈控制器,以该模型下控制器自身能量损失函数作为代价函数对系数矩阵进行优化,并对比了 GA-PSO和粒子群优化(PSO)算法的优化效果。CarSim/Simulink联合仿真结果表明,经GA-PSO算法优化后的控制器跟踪精度和计算效率分别提高了47。06%和63。54%,且优化后的控制器具有较强的鲁棒性。
Optimization Design of Lateral LQR Controller for Intelligent Vehicle Based on GA-PSO
In order to solve the problem of low control accuracy and low parameter tuning efficiency caused by difficulty in selecting coefficient matrix Q and R of Linear Quadratic Regulator(LQR)in lateral control of intelligent vehicle,this paper proposed an optimization method of genetic particle mixing(Genetic Algorithm-Particle Swarm Optimization,GA-PSO).A lateral LQR controller and a feed-forward controller were designed based on the two-degree-of-freedom model of the vehicle.The coefficient matrix was optimized using the LQR controller's own energy loss function as the cost function.The algorithm optimization results of GA-PSO and PSO were compared.The CarSim/Simulink co-simulation shows that the GA-PSO optimized controller improves the tracking accuracy and computing efficiency by 47.06%and 63.54%,respectively,and the optimized controller has strong robustness.

Intelligent VehicleLateral controlTrajectory trackingLinear Quadratic Regulator(LQR)Particle Swarm Optimization(PSO)

王怡萌、仝秋红、孙照翔、高越、张武

展开 >

长安大学,西安 710064

陕西智能网联汽车研究院有限公司,西安 710000

智能汽车 横向控制 轨迹跟踪 线性二次型调节器 粒子群优化

国家重点研发计划"两链"融合企业(院所)联合重点专项(工业领域)

2022YFC30026022022LL-JB-03

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(3)
  • 1
  • 17