首页|公路货运危险驾驶行为智能预测技术研究

公路货运危险驾驶行为智能预测技术研究

扫码查看
基于某省载货汽车历史行驶数据,提出了一种基于卷积神经网络-长短期记忆(CNN-LSTM)网络与自注意力机制的危险驾驶行为预测方法。针对载货汽车行驶数据量大、维度高、特征提取难度大、时序性强的特点,首先运用XG-Boost对特征进行筛选,接着利用卷积神经网络(CNN)进行空间特征提取,再运用长短期记忆(LSTM)网络捕捉驾驶行为的时序信息,最后通过自注意力机制对危险驾驶行为进行预测。试验结果表明,该方法相对其他长时间序列预测方法在某省公路货运驾驶数据上表现优异,识别准确率达到85。05%,加权平均召回率达到83%,F1分数(F1-Score)达到84%。
Research on Intelligent Prediction Technology of Dangerous Driving Behavior in Highway Freight
Based on the historical driving data of trucks in a province,this paper proposed a prediction method of dangerous driving behavior based on Convolutional Neural Network-Long Short-Term Memory(CNN-LSTM)network and self-attention mechanism.For the characteristics of large amount of truck driving data,high dimension,difficult feature extraction and strong time sequence,this method first used XGBoost to filter the features,then used CNN to extract spatial features and LSTM to further capture the temporal information of driving behaviors.Finally,dangerous driving behaviors were predicted by self-attention mechanism.Experimental results show that the method presented in this paper performs better than other long time series prediction methods on highway freight driving data in a province,with recognition accuracy reaching 85.05%,the weighted average recall rate reaches 83%,and the F1-score reaches 84%.

Highway freightData drivenSelf-attention mechanismDangerous driving behaviorPrediction of driving behavior

柳鹏飞、陆见光、徐磊、唐向红、刘方杰

展开 >

贵州大学,现代制造技术教育部重点实验室,贵阳 550025

贵州大学,公共大数据国家重点实验室,贵阳 550025

重庆工业大数据创新中心有限公司,重庆 400707

贵州新思维科技有限责任公司,贵阳 550001

展开 >

公路货运 数据驱动 自注意力机制 危险驾驶 行为预测

贵州省科技支撑计划

QKHZC[2022]YB074

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(3)
  • 13