首页|高速公路拥堵工况下自动驾驶车辆切入场景测试集构建与安全性评估

高速公路拥堵工况下自动驾驶车辆切入场景测试集构建与安全性评估

扫码查看
为评估中国高速公路拥堵工况下自动驾驶汽车在切入场景中的安全风险,从自然驾驶数据集中提取64个切入样本,采用六层次模型和相关性分析方法确定场景要素范围,通过抽样生成1 000个测试用例并构建安全评估指标体系分析车辆运行安全,运用随机森林算法确定引发风险的关键因素。结果表明:在1 000个测试用例中,风险场景占比5。3%,纵向相对速度是导致风险的关键要素;拥堵工况下,环境车辆速度低于自动驾驶车辆速度23%时形成高风险切入场景,该指标可作为拥堵切入场景下自动驾驶汽车识别风险的预测指标,亦可用于该场景下的事故责任认定。
Construction Test Set and Risk Assessment of Cut-in Scenarios for Autonomous Vehicles under Highway Congestion Conditions
To assess the safety risks of autonomous vehicles during cut-in scenarios on congested Chinese highways,64 cut-in samples were extracted from a natural driving dataset.Employing a six-level model and correlation analysis,the static and dynamic factors of the scenarios were defined.Subsequently,1 000 test cases were randomly generated through sampling,and a safety assessment index system was established to analyze the safety of vehicle operations.Lastly,the random forest algorithm was applied to identify the key factors triggering risks.Results indicate that risk scenarios account for 5.3%of the total,with longitudinal relative velocity identified as the crucial factor.Under congested conditions,a high-risk cut-in scenario is formed when the speed of surrounding vehicles is 23%lower than that of autonomous vehicles,this indicator serves as a crucial predictive measure for identifying collision risks in congested cut-in scenarios for autonomous vehicles and may be applied in determining liability of accident in such scenarios.

HighwayCongested conditionsAutonomous vehiclesCut-in scenarioOperational safetyRandom forest

石帅坤、赵丹、马明月、苗泽霖、周孝吉

展开 >

中国人民公安大学,北京 100038

公安部道路交通安全研究中心,北京 100062

中国汽车工程研究院股份有限公司,重庆 401122

高速公路 拥堵工况 自动驾驶汽车 切入场景 运行安全 随机森林

国家重点研发计划自动驾驶准入仿真测评技术研究与工具研发1032课题

2023YFB43027030001KTCP20230340

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(4)
  • 34