首页|基于遗传算法优化支持向量回归的电池SOH预测

基于遗传算法优化支持向量回归的电池SOH预测

扫码查看
针对实车运行过程中电池当前可用容量难获取、电池健康状态评估不准确的问题,提出利用车辆的停车充电片段数据,通过箱型图及卡尔曼滤波算法对安时积分法计算所得的电池容量进行修正,构建支持向量回归模型用于电池衰减预测,通过皮尔森相关性分析确定有效的模型输入参数,结合遗传算法优化模型参数。结果表明:优化后模型的拟合优度可达88%,相较于优化前提高了 12%,可以实现电池健康状态的准确预测。
Battery SOH Prediction Based on Support Vector Regression Optimized by Genetic Algorithm
The current available capacity of the battery is difficult to obtain,and the health status of the battery is difficult to estimate accurately during the operation of the vehicle.Therefore,this paper proposed to use the parking and charging segment data of the vehicle to correct the battery capacity obtained by ampere-hour integration method through box diagram and Kalman filter algorithm.The support vector regression model was constructed for battery degradation prediction.The effective model input parameters were determined by Pearson correlation analysis.The model parameters were optimized by genetic algorithm.Results show that the fitting accuracy of the optimized model reaches 88%,which is 12%higher than that before optimization,can accurately predict the SOH of vehicle battery.

Vehicle dataPower batteryCapacity degradationKalman filterGenetic algorithmSupport vector regression

何山、郝雄博、赵宇明、姜颖、李昊巍

展开 >

深圳供电局有限公司,深圳 518000

中汽数据(天津)有限公司 天津 300000

中国工业互联网研究院,北京 100000

实车数据 动力电池 容量衰减 卡尔曼滤波 遗传算法 支持向量回归

规模化电动汽车与电网互动关键技术研究与示范应用(一期)

090000KK52210132

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(5)
  • 8