首页|基于LightGBM算法和出行链理论的电动汽车充电负荷多时间尺度预测模型

基于LightGBM算法和出行链理论的电动汽车充电负荷多时间尺度预测模型

扫码查看
为提高电动汽车充电负荷预测的准确性,设计了一种基于轻量级梯度提升机(LightGBM)算法和出行链理论的电动汽车充电负荷多时间尺度预测模型。利用出行链描述用户出行过程,采用蒙特卡洛法抽取时空数据,计算不同区域出行和停留时间的概率密度函数,采用牛顿法划分多时间尺度充电概率,明确驾驶时空分布与充电状况,并运用模糊数学定理与LightGBM分类充电负荷数据,构建了多季节多时段预测模型。采用LightGBM高效并行计算模式,明确充电负荷变化规律,实现了多时间尺度预测。试验结果表明:所建立的模型在不同季节和电动汽车数量条件下,预测误差低于100 kW,预测空报率低于3%,可准确展现充电负荷的变化规律。
A Multi Time Scale Prediction Model for Electric Vehicle Charging Load Based on LightGBM Algorithm and Travel Chain Theory
To improve the prediction accuracy of electric vehicle charging load,a multi time scale prediction model for electric vehicle charging load was designed based on the Lightweight Gradient Boosting Machine(LightGBM)algorithm and travel chain theory.The travel chain was used to describe the user's travel process,Monte Carlo method was used to extract the spatiotemporal data,and the probability density functions of travel and stay time in different regions was calculated.Newton method was used to divide the probability of charging at multiple time scales,clarifying the spatiotemporal distribution of driving and charging conditions.Fuzzy mathematics theorem and LightGBM were applied to classify charging load data,and a multi season and multi time prediction model were constructed.The efficient parallel computing mode of LightGBM was applied which clarified the variation pattern of charging load,and multi time scale prediction was achieved.The experimental results show that the established model has a prediction error of less than 100 kW and a prediction false alarm rate of less than 3%under different seasons and the number of electric vehicles,and can accurately display the variation pattern of charging load.

Light Gradient Boosting Machine(LightGBM)Travel chain theoryCharging loadMultiple time scalesPrediction model

庞松岭、范凯迪、陈超、窦洁

展开 >

海南电网有限责任公司电力科学研究院,海口 570226

智能电网与海岛微网联合实验室,海口 570110

轻量级梯度提升机 出行链理论 充电负荷 多时间尺度 预测模型

中国南方电网有限责任公司科技项目

073000KK52220001

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(6)