首页|基于模糊收敛和模仿强化学习的自动驾驶横向控制方法

基于模糊收敛和模仿强化学习的自动驾驶横向控制方法

扫码查看
针对自动驾驶车辆各横向控制因素存在强耦合性,依赖理想模型的控制方法难以实现完全解耦且难以从仿真环境迁移到实际车辆,以及强化学习方法在自动驾驶横向控制中收敛速度慢的问题,利用模糊推理器和模仿强化学习在车辆横向控制中的共性,以模糊推理器作为模仿强化学习初始化条件,并进行学习过程指导,从而实现强化学习过程的快速收敛。利用MATLAB/Carla仿真以及实车试验对该控制方法进行了验证,结果表明,该方法在不依赖理想数学模型、不对模糊推理器进行深度优化的基础上,实现了模仿强化学习迭代次数的大幅减少,在500次的全路径迭代过程中完成了更优的车辆横向控制,在仿真和现实环境中均可获得很好的控制效果。
A Lateral Control Method of Autonomous Driving Based on Fuzzy Convergence and Imitative Reinforcement Learning
In view of the strong coupling of each control factor in the lateral control of autonomous vehicles,it is difficult for the control method relying on the ideal model to completely decouple and migrate from the simulation environment to the actual vehicle,and the problem that the convergence speed of the reinforcement learning method in the lateral control of autonomous vehicles is not ideal,the fuzzy inference machine and the similarity of the simulation reinforcement learning in the lateral control factors of vehicles are used to combine the two.A fuzzy inference machine is used as the initialization condition for simulated reinforcement learning,and provide guidance for the learning process,thus achieving rapid convergence of the learning process.The MATLAB/Carla simulation and vehicle test are applied to verify the control method.The results show that the method can significantly reduce the number of simulation reinforcement learning iterations,achieve better vehicle lateral control performance in 500 full path iterations,and achieve good control effect in both simulation and real environment on the basis of not relying on the ideal mathematical model and not having to carry out in-depth optimization of the fuzzy inference device.

Autonomous drivingLateral controlImitative learningReinforcement learningFuzzy inference

郑川、杜煜、刘子健

展开 >

北京联合大学,北京市信息服务工程重点实验室,北京 100101

自动驾驶 横向控制 模仿学习 强化学习 模糊推理

北京市朝阳区科技局"智能配送物流机器人协同创新中心"项目

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(7)
  • 9