首页|基于粒子群优化的无人车双惯性测量单元姿态融合方法

基于粒子群优化的无人车双惯性测量单元姿态融合方法

扫码查看
为提高无人车系统中微机电惯性测量单元(MEMSIMU)的姿态角解算精度,提出了一种基于粒子群优化(PSO)算法和自适应强跟踪无迹卡尔曼滤波(STAUKF)算法的数据融合方法.首先,对两种不同精度的IMU模块通过STAUKF算法进行滤波,然后,利用构造的两类误差函数,引入PSO算法对两种IMU的后验估计进行融合,最后,在搭建的无人车平台上进行测试.试验结果表明,相较于两种单一IMU解算数据,所提出的方法解算获得的横滚轴与俯仰轴角度均方根误差分别减小了 56.67%、58.94%,相较于冗余式双IMU系统直接加权平均所解算的数据分减小了 36.55%、52.15%,解算精度更高、鲁棒性更强.
Attitude Fusion Method of Unmanned Vehicle Dual IMU Based on PSO
In order to improve the attitude angle solving accuracy of Micro-Electro-Mechanical System Inertial Measurement Unit(MEMS IMU)in unmanned vehicle system,this paper proposed a Particle Swarm Optimization(PSO)based algorithm and a Strong Tracking Adaptive Unscented Kalman Filter(STAUKF)data fusion method.Firstly,two kinds of IMU modules with different precision were filtered by STAUKF algorithm.Secondly,two kinds of error functions were constructed and PSO algorithm was introduced to fuse the two kinds of IMU posterior estimation.Finally,the test was carried out on the built unmanned vehicle platform.Experimental results show that,compared with the data solved by two single IMU sensors,the root mean square error of the transverse roller shaft and pitch shaft angle solved by the proposed algorithm is reduced by 56.67%and 58.94%,respectively,and the data solved is reduced by 36.55%and 52.15%respectively compared with direct weighted average of the redundant dual IMU system.Therefore,the algorithm proposed in this paper is more accurate and robust.

Redundant sensorData fusionParticle Swarm Optimization(PSO)Strong trackingKalman filter

马帅旗、贺海育、周雷金、王文妍

展开 >

陕西理工大学,汉中 723000

冗余传感器 数据融合 粒子群优化 强跟踪 卡尔曼滤波

陕西省重点研发计划项目陕西省教育厅科研计划项目

2023-YBNY-20518JK0146

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(8)