首页|车联网中基于联邦和强化学习的边缘缓存策略

车联网中基于联邦和强化学习的边缘缓存策略

扫码查看
为解决车联网中传统内容流行度预测方法无法准确捕获车辆请求特性,导致缓存命中率较低的问题,提出了一种基于联邦学习和强化学习的边缘协同缓存策略。该策略将车辆请求概率更高的内容预缓存在其他车辆或路侧单元中,以提高缓存命中率和降低平均内容获取延时。采用联邦学习方法利用分布在多个车辆上的私有数据进行训练并预测内容流行度,然后使用强化学习算法求解目标函数,获得流行内容的最佳缓存位置。结果表明,所提出的策略在缓存命中率和平均内容获取延时方面均优于其他对比缓存策略,有效提升了车联网边缘缓存性能。
Edge Caching Strategy of Internet of Vehicles Based on Federated and Reinforcement Learning
In order to solve the problem that the traditional content popularity prediction method in the Internet of Vehicles cannot accurately capture the vehicle request characteristics and leads to the low cache hit rate,an edge collaborative caching strategy based on federated learning and reinforcement learning is proposed.This strategy pre-caches content with a higher probability of vehicle requests in other vehicles or roadside units to improve the cache hit ratio and reduce the average content acquisition delay.The federated learning method is used to train and predict the content popularity using private data distributed across multiple vehicles,and then the reinforcement learning algorithm is used to solve the objective function to obtain the best cache location for the popular content.The results show that the proposed strategy is better than other caching strategies in terms of cache hit ratio and average content acquisition delay,which effectively improves the performance of the edge cache of the Internet of Vehicles.

Intelligent transportationEdge cachingInternet of VehiclesFederated learningReinforcement learning

张良、张国栋、卢剑伟、雷夏阳、程浩

展开 >

合肥工业大学,合肥 230009

智能交通 边缘缓存 车联网 联邦学习 强化学习

国家重点研发计划项目

2021YFE0116600

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(10)