首页|LIO-SAM框架下的智能车辆SLAM算法优化与实现

LIO-SAM框架下的智能车辆SLAM算法优化与实现

扫码查看
为解决激光SLAM在局部地图构建时重复提取关键帧及回环检测中的无效回环问题,基于LIO-SAM框架,采用vector容器、Kd-tree最近邻搜索与VoxelGrid滤波器,避免当前帧附近关键帧的重复提取。在回环检测方面,引入基于扫描上下文与基于距离的回环检测算法,通过设置帧序列差异阈值筛选回环帧,减少在红绿灯等待或礼让行人场景中的回环检测次数。试验结果表明,与LIO-SAM相比,所提出算法在不影响建图精度的前提下,平均缩短当前帧附近关键帧提取时间31。39%,回环检测次数减少32。5%,显著提升计算效率和鲁棒性,为优化资源利用和算法性能提供了有效方法。
Optimization and Implementation of SLAM Algorithm for Intelligent Vehicles under LIO-SAM Framework
To address the issues of redundant keyframe extraction during local map construction and invalid loop closures in loop detection for laser-based SLAM,this study adopts a method based on the LIO-SAM framework.It utilizes a vector container,Kd-tree nearest neighbor search,and VoxelGrid filter to avoid redundant extraction of keyframes near the current frame.For loop detection,algorithms based on scan context and distance-based methods are introduced.By setting a threshold for frame sequence differences,loop frames are screened to reduce the number of loop detections in scenarios such as waiting at traffic lights or yielding to pedestrians.Experimental results show that,compared to LIO-SAM,the proposed algorithm reduces the average keyframe extraction time near the current frame by 31.39%and the number of loop detections by 32.5%,without compromising mapping accuracy.This significantly enhances computational efficiency and robustness,providing an effective method for optimizing resource utilization and algorithm performance.

LIDAR SLAMLIO-SAMLocal mapKeyframe extractionLoop detection

张家鑫、田国富、常天根、张森

展开 >

沈阳工业大学,沈阳 110870

激光SLAM LIO-SAM 局部地图 关键帧提取 回环检测

2024

汽车技术
中国汽车工程学会 长春汽车研究所

汽车技术

CSTPCD北大核心
影响因子:0.522
ISSN:1000-3703
年,卷(期):2024.(12)