首页|基于NGSIM的驾驶风格识别研究

基于NGSIM的驾驶风格识别研究

扫码查看
文章针对不同的驾驶员做出了驾驶风格识别。首先,利用对称指数移动平均滤波算法对NGSIM数据集进行平滑处理;其次,通过分析国内外关于表征驾驶风格的关键指标,确定了 8 个驾驶风格特征变量,再计算驾驶风格特征向量秩,验证了所选的 8 个特征具有较好的独立性,结合主成分分析识别表征驾驶风格的三种变量;最后,构建了 K-Means++模型,将驾驶员驾驶风格聚类为激进型、一般型和谨慎型。为了对比验证,还建立K-Means和高斯混合模型(GMM)。结果表明,K-Means++模型的轮廓系数和算法运行时长均优于 K-Means、GMM,文章所提出的驾驶风格聚类方法能够对驾驶员的驾驶风格进行有效分类,对于提升交通安全、交通效率和促进智能交通系统的发展具有重要的意义。
Research on Driving Style Recognition Based on NGSIM
This article focuses on identifying driving styles among different drivers.Firstly,the NGSIM dataset is smoothed by symmetrical exponential moving average filtering algorithm.Secondly,by analyzing key indicators from domestic and international studies on characterizing driving styles,eight driving style feature variables are determined.The independence of these eight features is validated by calculating the rank of the driving style feature vector.Combining principal component analysis,three variables that characterize driving styles are identified.Then,the K-Means++model is constructed to cluster driving styles into aggressive,moderate,and cautious types.For comparison and validation,K-means and gaussian mixture module(GMM)models are also established.The results show that the silhouette coefficient and algorithm runtime of the K-Means++model are superior to those of the K-Means and GMM models.The driving style clustering method proposed in this paper can effectively classify the driving style of drivers,which is of great significance for improving traffic safety,traffic efficiency and promoting the development of intelligent transportation system.

traffic safetydriving styleK-Means++NGSIMPCA

康宇、赵建有、赵阳、孙战丽

展开 >

长安大学 汽车学院,陕西 西安 710064

长安大学 运输工程学院,陕西 西安 710064

河南交通投资集团有限公司航空港分公司,河南 郑州 450018

交通安全 驾驶风格 K-Means++ NGSIM PCA

2025

汽车实用技术
陕西省汽车工程学会

汽车实用技术

影响因子:0.205
ISSN:1671-7988
年,卷(期):2025.50(1)