首页|基于改进粒子滤波的锂电池健康状态估计

基于改进粒子滤波的锂电池健康状态估计

扫码查看
为了准确估计锂离子电池健康状态(SOH),文章提出一种基于改进粒子滤波算法的SOH评估方法。针对传统粒子滤波算法中粒子权重趋于零、导致粒子多样性丧失的问题,引入残差重采样算法,通过分离粒子权重的整数和小数部分,以替代传统的重采样方法,从而减轻粒子退化现象,保持粒子集的多样性。同时,结合无迹卡尔曼滤波(UKF)算法生成基于状态均值和协方差的 Sigma 点,以更精确地捕捉系统状态的不确定性,避免局部线性化近似的截断误差。采用NASA实验室公布的试验数据进行验证,结果表明,与传统粒子滤波算法相比,该方法将平均误差降低至 2%以内,显著提升了SOH估计的精度和鲁棒性。
State of Health Estimation of Lithium Battery Based on Improved Particle Filter
In order to accurately estimate the state of health(SOH)of lithium-ion batteries,this paper proposes an SOH evaluation method based on an improved particle filter algorithm.In order to solve the problem that the particle weight tends to zero in the traditional particle filter algorithm and leads to the loss of particle diversity,the residual resampling algorithm is introduced to replace the traditional resampling method by separating the integer and decimal parts of the particle weight,so as to reduce the particle degradation phenomenon and maintain the diversity of the particle set.At the same time,the unscented Kalman filter(UKF)algorithm is combined to generate Sigma points based on state mean and covariance to capture the uncertainty of the system state more accurately and avoid the truncation error of local linearization approximation.The experimental data published by NASA laboratory are used for verification,and the results show that compared with the traditional particle filter algorithm,the proposed method reduces the average error to less than 2%,and significantly improves the accuracy and robustness of SOH estimation.

lithium batteryresidual resamplingunscented Kalman filterparticle filterstate of health

王保德、郭来功、李小龙、韩剑秋

展开 >

安徽理工大学 电气与信息工程学院,安徽 淮南 232001

锂电池 残差重采样 无迹卡尔曼滤波 粒子滤波 健康状态

2025

汽车实用技术
陕西省汽车工程学会

汽车实用技术

影响因子:0.205
ISSN:1671-7988
年,卷(期):2025.50(2)