首页|基于视频图像的车辆检测优化

基于视频图像的车辆检测优化

扫码查看
随着智能交通系统和无人驾驶汽车的发展,车辆检测技术的重要性日益凸显.传统的目标检测算法面对高分辨率、多尺度和复杂背景的无人机航拍图像表现不佳.为提升Yolov5算法在无人机航拍图像中识别电动自行车的检测精度,需要对数据采集和处理、模型调整和优化等方面进行改进.首先,需要获取多样化的高质量图像,并通过改进标注技术和图像增强手段,来提升电动自行车的特征识别能力.其次,调整Anchor Box的尺寸和比例,引入K-means聚类算法计算来最佳Anchor,从而优化模型训练过程.通过加权损失函数和焦点损失函数,提高对难分类电动自行车的检测精度.经过实验得出,优化后的Yolov5模型在同样环境下的电动自行车检测中表现优于原始模型,精确度从72%提升至83%,识别效率提高了 23%,优化的Yolov5模型为智能交通系统中的电动自行车检测提供了更准确和高效的解决方案.
Optimization of vehicle detection based on video images
With the development of intelligent transportation systems and autonomous vehicles,the importance of vehicle detection technology has become increasingly prominent.Traditional object detection algorithms perform poorly on high-resolution,multi-scale,and complex background images captured by UAVs.To improve the detection accuracy of electric bicycles in UAV aerial images using the Yolov5 algorithm,enhancements in data acquisition and processing,model adjustment,and optimization are necessary.Firstly,diverse high-quality images need to be obtained,and the feature recognition capability of electric bicycles should be enhanced through improved annotation techniques and image augmentation methods.Secondly,the size and ratio of Anchor Boxes should be adjusted,and the K-means clustering algorithm should be introduced to calculate the optimal Anchors,thereby optimizing the model training process.By incorporating weighted loss functions and focal loss functions,the detection accuracy of hard-to-classify electric bicycles is improved.Experiments show that the optimized Yolov5 model outperforms the original model in detecting electric bicycles in the same environment,with accuracy improved from 72%to 83%and recognition efficiency increased by 23%.The optimized Yolov5 model provides a more accurate and efficient solution for electric bicycle detection in intelligent transportation systems.

Yolov5 optimizationvehicle detectionUAV aerial imageryintelligent transportationfocal lossK-means algorithm

严文骏、胡宇辰

展开 >

浙江警察学院,杭州 310000,中国

Yolov5优化 车辆检测 无人机航拍 智能交通 焦点损失 K-means算法

2024

汽车与安全
中国机动车辆安全鉴定检测中心

汽车与安全

ISSN:1006-6713
年,卷(期):2024.(11)