首页|基于图数据增强的疾病与基因关联挖掘

基于图数据增强的疾病与基因关联挖掘

扫码查看
针对现有关联数据不完整和利用多源组学数据不充分等问题,设计基于三跳局部拓扑相似性的计算指标,识别具有生物学意义但尚未映射的蛋白质相互作用(Protein-Protein Interactions,PPI),提出了一种基于图数据增强的新型图神经网络方法(GDaEPred)用于疾病与基因关联挖掘.实验结果表明,GDaEPred的平均精确率提升了 4.1%,精确率、召回率和F1 score也均有提升.
Disease and Gene Association Mining Based on Graph Data Enhancement
In view of the incompleteness of existing association data and the inadequacy of multi-source omics data,computational indexes based on three-hop local topological similarity were designed to identify biologically significant but unmapped Protein-Protein Interactions(PPI).A novel graph neural network method(GDaEPred)based on graph data enhancement was proposed for mining disease-gene associations.Experimental results showed that the average accuracy of GDaEPred was improved by 4.1%,and the pre-cision,recall and F1 score were also improved.

graph neural networksgraph data enhancementdisease gene prediction

贾祥虎、吴舜尧

展开 >

青岛大学计算机科学技术学院,青岛 266071

图神经网络 图数据增强 致病基因预测

山东省自然科学基金山东省高等学校科技计划

ZR2019PF012J18KA356

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(1)
  • 27