首页|基于局部区域强化的单目深度估计算法

基于局部区域强化的单目深度估计算法

扫码查看
针对深度估计场景中复杂纹理和复杂几何结构造成的物体边界扭曲、局部细节信息丢失等问题,提出基于局部区域强化的单目深度估计方法.首先,利用基于卷积神经网络的深度估计模型,得到低分辨率的图像;然后,引入显著目标检测模型,得到高分辨率的显著图像,监督生成深度图;最后将显著图与深度图融合,以此提高整个图像的深度估计精度.公共数据集上的实验结果表明,该方法可以显著提高单目深度估计的精度.
Monocular Depth Estimation Methcd Based on Local Regional Reinforcement
A monocular depth estimation method based on local regional reinforcement was proposed to ad-dress the issues of object boundary distortion and loss of local detail information caused by complex texture and geometry structare in depth estimation scene.First,the depth estimation model based on the convolu-tional neural network was used to obtain the low-resolution image.Then,the saliency object detection model was introduced to obtain the high-resolution saliency map which supervised the generation of depth map.Finally,the salient map and depth map were fused to improve the overall depth estimation accuracy of the image.Experimental results on public datasets show that the proposed method can significantly im-prove the precision of monocular depth estimation.

monocular depth estimationlocal regional reinforcementconvolutional neural network deep learning

王乐刚、陈程立诏

展开 >

青岛大学计算机科学技术学院,青岛 266071

中国石油大学计算机科学技术学院,青岛 266555

单目深度估计 局部区域强化 卷积神经网络 深度学习

国家自然科学基金山东省高等学校青年创新科技支持计划

617722942021KJ062

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(1)
  • 23