首页|基于Swin Transformer和CNN的汉字书法教学系统

基于Swin Transformer和CNN的汉字书法教学系统

扫码查看
针对日益增长的汉字书法学习需求,将滑动窗口自注意力(Swin Transformer,ST)模型和卷积神经网络(Convolutional Neural Network,CNN)模型相结合,提出手写体汉字识别ST-CNN模型,进而开发了汉字书法教学系统.实测结果表明,ST-CNN 模型识别准确率约为 91.6%,较传统的ST模型提升了约 0.5 个百分点,较传统的CNN模型与ST模型,在收敛速度上分别提升了约 10 和 30 个百分点,开发的汉字书法教学系统性能良好.
Chinese Character Calligraphy Teaching System Based on Swin Transformer and CNN
In response to the growing demand for Chinese calligraphy learning,a model combining the Swin Transformer(ST)and Convolutional Neural Network(CNN)was proposed for handwritten Chinese char-acter recognition,subsequently leading to the development of a Chinese character calligraphy teaching sys-tem.The system employed an ST-CNN model for handwriting recognition and classification.The experi-mental results show that the recognition accuracy of the proposed ST-CNN model is around 91.6%,which has a 0.5 percentage points improvement over the traditional ST model.Moreover,the convergence speed of ST-CNN has been improved by about 10 and 30 percentage points respectively compared with traditional CNN and ST models.The developed calligraphy teaching system demonstrates good stability and perform-ance.

deep learningswin transformer modelCNNhandwritten Chinese character recognition

林粤伟、张通、宋丹、梁汇鑫、薛克程

展开 >

青岛科技大学信息科学技术学院,青岛 266061

山东新华健康科技有限公司,淄博 255100

海信视像科技股份有限公司,青岛 266001

深度学习 滑动窗口自注意力模型 卷积神经网络 手写体汉字识别

青岛科技大学公派访学项目青岛科技大学教学改革研究面上项目(2022)国家级大学生创新创业训练计划(2023)

2022MS045202310426214

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(1)
  • 27