首页|基于关系缩放模型的电商知识图谱链接预测问题研究

基于关系缩放模型的电商知识图谱链接预测问题研究

扫码查看
针对电商知识图谱链接预测模型精度较低且存在重复推荐同类型商品的问题,提出改进的关系缩放(Relation Scale,RS)模型.基于TransE和TuckER模型,判断三元组头尾实体关系强弱,引入关系缩放因子,确定所有关系路径权重,以提高模型收敛速度.实验结果表明,基于 OpenBG500 数据集,改进模型的 MRR、Hits@1、Hits@3 和 Hits@10 均有提高;相较于传统 TransE 模型,RSTransE 的 MRR 和 Hits@10 分别提高了 47.4%和71.1%;相较于传统TuckER模型,RSTuckER的MRR 和 Hits@10 分别提高了 35.8%和28.4%.RS模型能更准确预测用户需求,实现更加个性化且精准的推荐结果.
Research on the E-commerce Knowledge Graph Link Prediction Problem Based on the Relation Scale Model
To address the issues of low accuracy in link prediction models for e-commerce knowledge graphs and the repeated recommendation of the same type of products,an improved Relation Scale(RS)model was proposed.The strength of relationships between the head and tail entities of triples was assessed using the TransE and TuckER model.The weights of all relationship paths were determined by introducing a scaling factor,thus enhancing the model's convergence speed.Experimental results show that the MRR,Hits@1,Hits@3 and Hits@10 of the improved models are all enhanced based on the OpenBG500 dataset.The MRR and Hits@10 for the RSTransE model increase by 47.4%and 71.1%respectively,compared with the traditional TransE model.The MRR and Hits@10 for the RSTuckER model increase by 35.8%and 28.4%respectively,compared with the traditional TuckER model.These findings indicate that the RS model can more accurately predict user needs and achieve more personalized and precise recommenda-tion results.

referral systemrelational scaleknowledge graphlink prediction

潘亚男、王军

展开 >

青岛大学商学院,青岛 266061

推荐系统 关系缩放 知识图谱 链接预测

山东省自然科学基金

ZR2020MG012

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(2)
  • 22