首页|基于自注意力机制的IW方法与3D-BoNet的实例分割网络

基于自注意力机制的IW方法与3D-BoNet的实例分割网络

扫码查看
针对实例分割算法中点云特征提取困难和鲁棒性低的问题,提出一种基于自注意力机制与3D-BoNet算法的实例分割网络(IW-BoNet).在特征提取阶段,提出基于自注意力机制的Instance Wise(IW)方法,采用自注意力模块学习特征权重,捕捉实例上下文信息;将3D-BoNet模型中的欧式距离损失函数替换为Smooth L1损失函数.在STPLS3D数据集上的性能测试结果表明,与3D-BoNet模型相比,IW-BoNet模型平均均值精度提升6.2%,鲁棒性得到提升,能够更加高效地提取实例信息.
Instance Segmentation Network Based on IW Method of Self-attention Mechanism and 3D-BoNet Algorithm
Aiming at the difficulty of point cloud feature extraction and low robustness in instance segmen-tation algorithms,an instance segmentation network(IW-BoNet)based on self-attention mechanism and 3D-BoNet algorithm was proposed.In the stage of feature extraction,a novel approach leveraging the self-attention mechanism,named of Instance Wise(IW),was proposed.The utilization of a self-attention module enabled effective learning of feature weights and facilitates capturing comprehensive contextual in-formation pertaining to each instance.The Euclidean distance loss function in the 3D-BoNet model was re-placed with the Smooth L1 loss function.The performance test on the STPLS3D dataset shows that com-pared with the original 3D-BoNet model,the average mean accuracy of IW-BoNet model is improved by 6.2%,and the robustness is improved,which can extract the instance information more efficiently.

instance segmentationdeep learningneural networkspoint cloudself-attention

昝国宽、宗成婕、高鹏翔

展开 >

青岛大学计算机科学技术学院,青岛 266071

青岛恒星科技学院,青岛 266041

实例分割 深度学习 神经网络 点云 自注意力

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(3)