首页|基于多粒度特征网络的无监督换装行人重识别算法

基于多粒度特征网络的无监督换装行人重识别算法

扫码查看
针对行人重识别任务中数据标注困难以及服装变化问题,基于无监督方法PPLR(Part-based Pseudo Label Refinement)提出了一个多粒度特征网络(Multi-grained Feature Network,MGFNet).仅输入RGB图像,即可充分提取图像中行人的全局、局部和脸部特征,根据注意力机制针对性地抑制特征中的服装信息,挖掘行人的本质特征.融合全局、脸部和局部特征,根据聚类算法生成精确的伪标签监督模型训练.在公开的换装数据集上测试MGFNet性能,并设计消融实验验证MGFNet的有效性.实验结果表明,MGFNet的mAP和Rank-1指标在PRCC数据集上分别比基准模型PPLR提高了 6.9%和15.8%.
Unsupervised Cloth-changing Person Re-identification Algorithm Based on Multi-grained Feature Network
Aiming at the problems of data labeling difficulties and clothing changes in person re-identifica-tion tasks,a multi-grained feature network(MGFNet)based on unsupervised method PPLR(Part-based Pseudo Label Refinement)was proposed.Only the RGB images were input to fully extract global,local and facial features of persons in the images,and the clothing information in the features was suppressed according to the attention mechanism to mine the substantive features of persons.The fusion of global,fa-cial and local features was followed by the clustering algorithm to generate precise pseudo-labels,which were used to supervise model training.The performance of MGFNet was evaluated on public cloth-chan-ging datasets,and ablation studies were designed to validate the effectiveness of MGFNet.The results in-dicate that MGFNet's mAP and Rank-1 metrics on the PRCC dataset respectively improved by 6.9%and 15.8%compared to the baseline model PPLR.

cloth-changing person re-identificationunsupervised learningdual-branch networkattention mechanismfeature alignment

郭传磊、杨杰、周萌萌、张靖贤

展开 >

青岛大学机电工程学院,青岛 266071

青岛联合创智科技有限公司,青岛 266100

换装行人重识别 无监督学习 双分支网络 注意力机制 特征对齐

2024

青岛大学学报(自然科学版)
青岛大学

青岛大学学报(自然科学版)

影响因子:0.248
ISSN:1006-1037
年,卷(期):2024.37(3)