首页|基于朴素贝叶斯的西北太平洋柔鱼渔场预报模型的建立

基于朴素贝叶斯的西北太平洋柔鱼渔场预报模型的建立

扫码查看
西北太平洋是中国进行柔鱼(Ommastrephes bartramii)捕捞生产的重要海区,准确预报渔场出现的位置对提高渔业捕捞产量、节省燃油有重要的意义.本研究利用2002-2011年中国在该海域的历史产量数据、渔场时空数据以及包括海表温度、叶绿素浓度a、表温梯度强度和叶绿素梯度强度在内的海洋环境数据,基于朴素贝叶斯方法,建立了西北太平洋柔鱼渔场的预报模型.为满足朴素贝叶斯方法对条件独立性的假设,利用独立成份分析,重新获得相互独立的属性变量.通过求Cohen's Kappa系数最大值的方法,确定3种CPUE类型的先验概率,建立可用于渔场预报的朴素贝叶斯预报模型.作为实际验证,将2012年7~11月我国柔鱼渔船在西北太平洋实际生产数据与预报的高CPUE渔场位置进行叠加,平均综合预报精度达到69.9%,表明该模型对西北太平洋渔场的预报具有较好效果和可行性.
The Establishment of Northwest Pacific Ommastrephes bartramii Fishing Ground Forecasting Model Based on Naive Bayes Method
Northwest Pacific is an important fishing ground of Ommastrephesbartramii for China.The accurate prediction of fishing grounds is critical to energy saving and catch increasing.In this study,a squid fishing ground forecasting model was built with Naive Bayesian method according to the historical catching,spatio-temporal and marine environmental data of this region.The environmental data included sea surface temperature (SST),concentration of chlorophyll ((CHL),SST gradient strength and CHL gradient strength collected from 2002 to 2011.In order to satisfy the conditional independence assumption of naive Bayes method,the independent component analysis was carried out.By maximizing the Cohen's Kappa coefficient,three-type CPUEs prior probabilities were determined for the Naive Bayesian forecasting model.As a test,the forecasted fishing ground maps were overlapped with the practical fishing grounds found from July to November 2012.Such an overlapping showed that the average comprehensive accuracy of forecasted fishing grounds was 69.9 %,indicating that the Naive Bayesian model was effective for and feasible in forecasting the squid fishing grounds in northwest Pacific.

independent component analysisnaive Bayes methodfishing ground forecastingOmmastrephes bartramii

崔雪森、唐峰华、张衡、伍玉梅、樊伟

展开 >

中国水产科学研究院东海水产研究所农业部东海与远洋渔业资源开发利用重点实验室,上海200090

独立成分分析 朴素贝叶斯 渔场预报 柔鱼

国家科技支撑计划项目中央级公益性科研院所基本科研业务费专项项目

2013BAD13B012012T07

2015

中国海洋大学学报(自然科学版)
中国海洋大学

中国海洋大学学报(自然科学版)

CSTPCDCSCD北大核心
影响因子:0.474
ISSN:1672-5174
年,卷(期):2015.45(2)
  • 1
  • 16
  • 17