首页|具有对数源项的粘弹性Petrovsky方程解的局部适定性及高能爆破现象

具有对数源项的粘弹性Petrovsky方程解的局部适定性及高能爆破现象

扫码查看
本文侧重研究具有对数源项的粘弹性Petrovsky方程初边值问题解的爆破性质.结合Faedo-Galerkin逼近技巧和压缩映射原理,证明问题解的局部适定性.同时,利用反证技巧及凹性引理给出了高能解的爆破现象.
Local Well-Posedness and Blow-Up Phenomena at High Energy Level for Viscoelastic Petrovsky Equations with Logarithmic Nonlinearity
This paper focuses on the blow-up properties of solutions to initial boundary value problem for viscoelastic Petrovsky equations with logarithmic nonlinearity.By employing Faedo-Galerkin approximation technique along with contraction mapping principle,the local well-posedness of the problem is established.Moreover,combining contradiction argument and concavity lemma,we prove that the solution blows up in finite time at high energy level.

Petrovsky equationviscoelastic termlogarithmic nonlinearitylocal solvabilityblow-up

王萍、赵元章

展开 >

中国海洋大学数学科学学院,山东青岛 266100

Petrovsky方程 粘弹性项 对数源项 局部适定性 高能爆破

2025

中国海洋大学学报(自然科学版)
中国海洋大学

中国海洋大学学报(自然科学版)

北大核心
影响因子:0.474
ISSN:1672-5174
年,卷(期):2025.55(2)