首页|高阶张量协正性研究的最新进展

高阶张量协正性研究的最新进展

扫码查看
大数据时代,承载高阶高维信息的张量结构备受关注,从而引发了关于张量的理论、计算和应用的广泛研究.协正张量作为一种特殊的结构张量,也在材料物理及超图谱理论、多项式优化、张量互补与张量特征值互补等问题中凸显出不可或缺的作用.该文旨在对高阶协正张量数值判定、算法及应用的进展情况进行简单的梳理与总结,并希望对大规模高阶协正张量相关问题的未来发展提供可能的研究方向.
Recent progress on the study of copositivity of high-order tensors
In the era of big data,tensors have attracted much attention due to its ability in bearing higher-order and higher-dimensional information,which leads to extensive research on the theory,calcula-tion and application of tensors.As a special structured tensor,the copositive tensor plays an indispensable role in material physics,hypergraph theory,polynomial optimization,tensor complementarity and tensor ei-genvalue complementarity.This paper sorts out and summarizes the progress of numerical verification,al-gorithm and application of high order copositive tensors,and offers potential research avenues for the ad-vancement of large-scale,high-order copositive tensor-related problems in future studies.

copositive tensorhomogeneous polynomialtensor complementaritytensor eigen value

陈海滨

展开 >

曲阜师范大学管理学院,276826,山东省日照市

协正张量 齐次多项式 张量互补 张量特征值

国家自然科学基金山东省自然科学基金杰出青年基金

12071249ZR2021JQ01

2024

曲阜师范大学学报(自然科学版)
山东曲阜师范大学

曲阜师范大学学报(自然科学版)

影响因子:0.299
ISSN:1001-5337
年,卷(期):2024.50(2)
  • 36