首页|基于U-Net和小波变换的SAR图像道路分割算法

基于U-Net和小波变换的SAR图像道路分割算法

扫码查看
传统SAR图像道路分割存在受散斑噪声影响大,图像高频信息难以利用、分割精度低等问题.对此,该文提出一种基于小波变换注意力机制和U-Net的SAR图像道路分割算法.设计了基于小波变换的频域注意力机制;引入了混合池化机制,强化SAR图像中道路的细长特征;将条纹和金字塔池化与频域注意力加入U-Net,在此基础上,设计了一种用于SAR图像道路分割的卷积神经网络.此算法能有效抑制SAR图像中存在的噪声,同时能够对无关特征通道进行抑制,从而有效利用图像特征.频域注意力机制在保留图像有效信息的同时实现了去噪功能,增强了算法的鲁棒性,混合池化机制强化了道路特征,提高了分割准确率.采用真实的机载高分辨率SAR图像数据进行对比实验,结果表明,该算法具有良好的分割效果.
Road segmentation algorithm for SAR images based on U-Net and wavelet transform
Traditional SAR image road segmentation is greatly affected by speckle noise,and has diffi-cult in utilizing high-frequency information in the image,and low segmentation accuracy.In response to the above problems,this paper proposes a SAR image road segmentation algorithm based on the wavelet transform attention mechanism and U-Net.A frequency domain attention mechanism based on wavelet transform is designed;a hybrid pooling mechanism is introduced to enhance the elongated features of roads in SAR images;stripe and pyramid hybrid pooling and frequency domain attention are added to U-Net.On this basis,a convolutional neural network for road segmentation in SAR images is designed.The algorithm in this paper can effectively suppress the noise existing in SAR images,and at the same time suppress irrelevant feature channels,thereby effectively utilizing image features.The frequency domain at-tention mechanism achieves denoising function while retaining the effective information of the image,which enhances the robustness of the algorithm.The hybrid pooling mechanism strengthens the road char-acteristics and improves the segmentation accuracy.Real airborne high-resolution SAR image data were used to conduct road segmentation experiments.The results show that the algorithm in this paper has good segmentation effects and its effectiveness is verified.

SAR image road extractionconvolutional neural networkswavelet transformchannel attention

刘伟韬、潘志刚

展开 >

中国科学院空天信息创新研究院,100094

中国科学院大学电子电气与通信工程学院,100049,北京市

SAR图像道路提取 卷积神经网络 小波变换 通道注意力

国家重点研发计划

2017YFB0503001

2024

曲阜师范大学学报(自然科学版)
山东曲阜师范大学

曲阜师范大学学报(自然科学版)

影响因子:0.299
ISSN:1001-5337
年,卷(期):2024.50(3)
  • 3