首页|基于YOLOv5的高后果区智能识别研究

基于YOLOv5的高后果区智能识别研究

扫码查看
针对目前长输管道高后果区识别效率低,需耗费大量的人力、物力和时间成本,该文借助目标检测算法YOLOv5s,利用遥感影像及无人机航飞影像数据,结合高后果区识别规范,对不同类型的高后果区建立高后果区智能识别模型,通过评估,模型准确率和召回率均达到 90%以上,能有效识别高后果区.又以国内某管道高后果区为例,进一步验证模型的有效性,数据表明,该模型智能识别出的高后果区信息与传统人工辅助识别信息一致,能满足长输管道高后果区自动识别的实际需求,为高后果区风险管理提供及时准确的数据支持,为高后果区识别的自动化、智能化管理开拓新思路.
In view of the current low efficiency of identifying high-consequence areas in long-distance pipelines,which requires a lot of manpower,material resources and time costs,this paper uses the target detection algorithm YOLOv5s,uses remote sensing images and drone flight image data,and combines high-consequence area identification specifications.Intelligent identification models for high-consequence areas are established for different types of high-consequence areas.Through evaluation,the model accuracy and recall rate have reached more than 90%,which can effectively identify high-consequence areas.Taking a high-consequence area of a domestic pipeline as an example to further verify the effectiveness of the model.The data shows that the information of the high-consequence area intelligently identified by the model is consistent with the traditional manual auxiliary identification information,and can meet the actual needs of automatic identification of high-consequence areas of long-distance pipelines.The actual needs provide timely and accurate data support for risk management of high-consequence areas,and open up new ideas for automated and intelligent management of high-consequence area identification.

long-distance pipelinehigh-consequence areaYOLOv5starget detectionintelligent recognition model

王彦青、尚嘉年、刘新、刘建冲

展开 >

国家管网集团联合管道有限责任公司西气东输分公司浙江输气分公司,杭州 310000

北京管道有限公司北京输油气分公司,北京 100000

长输管道 高后果区 YOLOv5s 目标检测 智能识别模型

2025

科技创新与应用
黑龙江省报刊出版有限公司 黑龙江省科协技术协会

科技创新与应用

影响因子:0.993
ISSN:2095-2945
年,卷(期):2025.15(1)