首页|基于深度强化学习的轨交飞轮储能系统能量管理

基于深度强化学习的轨交飞轮储能系统能量管理

扫码查看
随着城市化进程的加速和公共交通系统的发展,地铁系统的运营效率和能源利用效率受到越来越多的关注。飞轮储能技术凭借其高功率循环能力,为轨道交通系统的能源利用问题提供新的解决方案。该文采用马尔科夫决策过程来描述单飞轮储能系统的能量管理问题,并使用基于深度Q网络的强化学习算法来学习最优的充放电阈值动态调整策略。通过在Matlab/Simulink平台搭建仿真环境,对开发的能量管理算法进行测试,并将其结果与固定充放电阈值、随机充放电阈值策略进行对比,表明该策略在提高电能利用效率和系统运行稳定性方面具有显著效果。
With the acceleration of urbanization and the development of public transportation systems,the operational efficiency and energy utilization efficiency of subway systems have attracted more and more attention.Flywheel energy storage technology provides new solutions to energy utilization problems in rail transit systems with its high-power cycle capabilities.In this paper,Markov decision process is used to describe the energy management problem of a single flywheel energy storage system,and a reinforcement learning algorithm based on deep Q network is used to learn the optimal dynamic adjustment strategy for charge and discharge thresholds.By building a simulation environment on Matlab/Simulink platform,the developed energy management algorithm is tested,and the results are compared with fixed charge and discharge threshold strategies and random charge and discharge threshold strategies,which shows that this strategy has significant effects on improving power utilization efficiency and system operation stability.

flywheel energy storage systemenergy managementMarkov decision processdeep reinforcement learningDeep Q-Network(DQN)

王宁、曲建真、张志强、类延霄、高信迈

展开 >

中车科技创新(北京)有限公司,北京 100096

中车青岛四方机车车辆股份有限公司,山东 青岛 266111

高速磁浮运载技术全国重点实验室,山东 青岛 266111

飞轮储能系统 能量管理 马尔科夫决策过程 深度强化学习 深度Q网络

2025

科技创新与应用
黑龙江省报刊出版有限公司 黑龙江省科协技术协会

科技创新与应用

影响因子:0.993
ISSN:2095-2945
年,卷(期):2025.15(2)