首页|基于双通道Transformer模型的多维信号故障诊断方法

基于双通道Transformer模型的多维信号故障诊断方法

扫码查看
感应电机在现代工业中有十分重要的作用。然而,电机长时间运行后会变得疲劳从而导致灾难性后果。由于电机故障诊断本质是对电机的时间信号分类,该研究提出双通道Transformer模型,该模型利用电流和振动信号进行诊断,并通过连续小波变换提取频域特征作为输入。双通道Transformer模型将数据的时域和频域信号分别通过Transformer模型,这种替代不仅可以提取时间特征,还可以提取空间特征。实验结果表明,所提出的模型可以提供高达 95。36%的诊断准确率,证明其在电机故障诊断中的有效性。与传统的单信号故障诊断方法相比,该模型具有更好的鲁棒性和准确性。
Induction motors play a very important role in modern industry.However,motors can become tired after running for a long time,leading to catastrophic consequences.Since the essence of motor fault diagnosis is to classify the time signal of the motor,this study proposes a dual-channel Transformer model,which uses current and vibration signals to diagnose,and extracts frequency domain features through continuous wavelet transform as inputs.The dual-channel Transformer model passes the time-domain and frequency-domain signals of the data through the Transformer model respectively.This substitution can extract not only temporal characteristics,but also spatial characteristics.Experimental results show that the proposed model can provide a diagnosis accuracy of up to 95.36%,proving its effectiveness in motor fault diagnosis.Compared with traditional single-signal fault diagnosis methods,this model has better robustness and accuracy.

motor fault diagnosisdual-channel Transformer modelwavelet transformmulti-dimensional signalfrequency domain characteristics

钟亮、邱化海、邱诒耿

展开 >

华电章丘发电有限公司,济南 250200

电机故障诊断 双通道Transformer模型 小波变换 多维信号 频域特征

2025

科技创新与应用
黑龙江省报刊出版有限公司 黑龙江省科协技术协会

科技创新与应用

影响因子:0.993
ISSN:2095-2945
年,卷(期):2025.15(2)