首页|基于模型预测控制的电—气互联系统动态优化调度研究

基于模型预测控制的电—气互联系统动态优化调度研究

扫码查看
在当前电气、天然气与人们生活密不可分的背景下,电—气互联综合能源系统(IPGES)的调度运行研究具有极其重要的价值和意义.目前电—气互联系统的运行策略大多基于日前概况设计,而负荷预测误差往往导致次优日前调度运行.针对这种情况,模型预测控制因为其实时性和鲁棒性的优点,在处理不确定性问题方面表现出卓越效果.本研究在长时间尺度上对日前调度进行了优化,并基于模型预测控制方法进行了实时在线优化调度.在日内调度中,采用卡尔曼滤波对负荷进行短期预测,并根据最新预测信息建立滚动优化和实时反馈校正模型以进行多时间尺度的调度.最后通过案例分析验证了该方法在动态优化调度电力系统和天然气系统组成的电—气互联系统中具有更好经济性和供需匹配性,并能有效应对负荷波动.
Research on Dynamic Optimization Scheduling of Electric Gas Interconnection System Based on Model Predictive Control
In the current context where electricity,natural gas and people's lives are closely intertwined,the research on the scheduling and operation of the Integrated Energy System(IPGES)for electricity gas interconnection has extremely important value and significance.At present,the operation strategies of power gas interconnected systems are mostly based on day ahead profile design,and load forecasting errors often lead to suboptimal day ahead scheduling.In response to this situation,model predictive control has shown excellent performance in dealing with uncertainty problems due to its advantages of real—time and robustness.This study optimizes the day ahead scheduling on a long time scale,and real—time online optimal scheduling is carried out based on the model predictive control method.In intraday scheduling,Kalman filtering is used for short—term load forecasting,and a rolling optimization and real—time feedback correction model is established based on the latest prediction information for multi time scale scheduling.Finally,a case study was conducted to verify that this method has better economic efficiency and supply—demand matching in the dynamic optimization scheduling of power and natural gas interconnected systems,and can effectively cope with load fluctuations.

electricity gas interconnection systemmodel predictive controldynamic optimizationkalman filtering

史美娟

展开 >

柳州职业技术学院,广西 柳州 545000

电—气互联系统 模型预测控制 动态优化 卡尔曼滤波

2024

青海电力
青海电力科学试验研究院 青海省电机工程学会

青海电力

影响因子:0.26
ISSN:1006-8198
年,卷(期):2024.43(1)
  • 14