首页|基于特征融合的RV减速器局部故障诊断研究

基于特征融合的RV减速器局部故障诊断研究

扫码查看
为提高模拟真实工况下RV减速器局部故障诊断方法的可靠性与识别精度,降低工业机器人的故障率,本文提出一种基于频谱、时频谱特征融合的方法,设置三种负载影响因素,采集伺服系统在不同模式下反馈的电流信号,并对电流信号进行快速傅里叶变换(FFT)和小波包分解(WPD),从而获取频谱、时频谱曲线.提取频谱曲线中的平均频域、重心频率、均方根频率及频率标准差用作频域特征值,将时频谱曲线中4个频带能量值用作时频域特征值,并构建融合特征向量;利用基于Sigmoid函数的极限学习机(ELM)对RV减速器的3种工作模式进行识别.结果表明:进行特征融合后,测试集数据的准确率与仅使用频谱特征、时频谱特征相比分别提高了 10.95%和5%.本文所研究的方法能够有效提高故障识别准确率,为开发工业机器人无传感在线监测提供指导.
Research on the partial fault diagnosis of RV reducer based on feature fusion
To improve the reliability and recognition accuracy of partial fault diagnosis methods for RV reducer under the simulated real working conditions,and reduce the failure rate of industrial ro-bots(IR),a method based on spectral and time-frequency spectrum feature fusion is proposed and three load influencing factors are set up.The current signals fed back by the servo system are col-lected under different modes.Then,fast fourier transform(FFT)and wavelet packet decomposition(WPD)are performed on the current signals to obtain the spectrum and time-frequency spectrum curves.The average frequency domain,center of gravity frequency,root mean square frequency and frequency standard deviation of spectrum curve are taken as frequency domain feature values.The energy values of four frequency bands from the time-frequency spectrum curve are used as time-frequency domain feature values.Besides,a fusion feature vector is constructed.Extreme learning machine(ELM)based on Sigmoid function is adopted to identify three operating modes of RV re-ducer.The results show that compared to using only spectrum features and time-frequency spec-trum features,the accuracy of the test set data is improved by 10.95%and 5%respectively after feature fusion.The method proposed in the paper can effectively improve the accuracy of fault iden-tification and provide guidance for the development of sensorless online monitoring of IR.

RV reducerfeature fusionspectrum analysistime-frequency spectrum analysisfault diagnosis

李恒、赵兵、庞琬琳

展开 >

青海大学机械工程学院,青海西宁 810016

RV减速器 特征融合 频谱分析 时频谱分析 故障诊断

青海省"昆仑英才·高端创新创业人才"项目青海大学智能制造工程创新实验班建设项目

RCPY-2021-04

2024

青海大学学报(自然科学版)
青海大学

青海大学学报(自然科学版)

影响因子:0.355
ISSN:1006-8996
年,卷(期):2024.42(2)
  • 19