首页|基于人工神经网络的钢管混凝土柱轴压承载力预测

基于人工神经网络的钢管混凝土柱轴压承载力预测

扫码查看
钢管混凝土柱的轴压承载力是结构设计的重要指标之一,准确预测轴压承载力是保障结构安全的重要前提.通过收集文献数据和数值模拟数据,建立包含394个样品的数据集,并基于人工神经网络对钢管混凝土柱在轴压作用下的承载力进行预测.同时,建立具有良好预测精度和泛化性的BP神经网络模型,对预测值与试验数据值进行分析对比,并利用SHAP可解释分析法探究模型参数对预测结果的影响.结果表明:本文建立的BP神经网络模型可以快速准确地预测不同尺寸下具有不同箍筋配筋率的钢管混凝土柱轴压承载力,相较于传统试验和数值模拟方法,该模型可以有效节约时间和费用.研究结果可为人工神经网络技术在钢管混凝土柱轴压承载力及其他力学性能的预测和应用等方面提供一定的数据参考.
Prediction of axial bearing capacity of concrete-filled steel tube columns based on the artificial neural network
The axial bearing capacity of concrete-filled steel tube(CFST)columns is one of the im-portant indicators in structure design,and accurately predicting the capacity is a significant prerequi-site for ensuring structure safety.A dataset including 394 samples by collecting literature data and numerical simulation data is established in this paper.The bearing capacity of CFST columns under axial compression is predicted based on the artificial neural network.A BP neural network model with good prediction accuracy and generalization is established to analyze and compare the predicted values with the experimental data values.SHAP interpretable analysis is adopted to analyze the influ-ence of model parameters on the prediction results.The results are as follows:The BP neural network model established in this paper can quickly and accurately predict the axial bearing capacity of CFST columns with different stirrup ratios under different sizes.Compared with traditional experimental and numerical simulation methods,BP neural network model can effectively save time and costs.The re-search results can provide certain data reference for the prediction and application of artificial neural network technology in the axial bearing capacity and other mechanical properties of CFST columns.

concrete-filled steel tube(CFST)columnaxial bearing capacityartificial neural net-workperformance prediction

陈雅文、陈志东、魏云鹏

展开 >

青海大学土木水利学院,青海西宁 810016

钢管混凝土柱 轴压承载力 人工神经网络 性能预测

2024

青海大学学报(自然科学版)
青海大学

青海大学学报(自然科学版)

影响因子:0.355
ISSN:1006-8996
年,卷(期):2024.42(6)