首页|一种基于深度图卷积神经网络的可控性辨识方法

一种基于深度图卷积神经网络的可控性辨识方法

扫码查看
针对网络化系统在传统可控性辨别方法中存在的矩阵运算量大、计算复杂度高且不适用于大规模系统的问题,本文提出一种基于深度图卷积神经网络(DGCNN)的可控性辨识方法.在该框架下,首先,通过图卷积层实现节点和局部结构特征的聚合;然后,将聚合特征送入分类池化层进行排序并统一输出张量;最后,再添加一维卷积神经网络和全连接层进行可控性分类.结果表明:提出方法在AUPR性能方面达到0.925以上,且在相同实验条件下计算时间比传统方法减少93.3%.以上结果证明了该方法具有显著的分类效果和突出的计算优势,使其在复杂网络可控性辨识方面具有实际的应用潜力.
A controllability identification method based on the deep graph convolutional neural network
A controllability identification method based on the deep graph convolutional neural network(DGCNN)is proposed to address the issues of large matrix operation,high computational complexity and unsuitability for large-scale systems in traditional controllability identification methods for network sys-tem.Under this framework,the aggregation of node and local structural features is first achieved through graph convolutional layers.Then,the aggregated features are fed into the classification pooling layer for sorting and unified output tensor.Finally,a one-dimensional convolutional neural network and fully con-nected layers are added for controllability classification.The results are as follows:The proposed method achieves an AUPR score of over 0.925.Under the same experimental conditions,the calculation time is reduced by 93.3%compared to traditional methods.The results indicate that the method has significant classification performance and outstanding computational advantages,making it have practical application potential in identifying controllability of complex networks.

complex networkcontrollabilitygraph neural networkgraph classification

梁鹏玮、张万宏、张妍

展开 >

青海大学机械工程学院,青海西宁 810016

青海大学智能化系统实验室,青海西宁 810016

西北民族大学电气工程学院,甘肃兰州 730030

青海大学化工学院,青海西宁 810016

展开 >

复杂网络 可控性 图神经网络 图分类

2024

青海大学学报(自然科学版)
青海大学

青海大学学报(自然科学版)

影响因子:0.355
ISSN:1006-8996
年,卷(期):2024.42(6)