首页|数据采集终端用分布式印制差分低通滤波器

数据采集终端用分布式印制差分低通滤波器

扫码查看
为解决高速数据采集终端的抗干扰问题,该文基于阶梯阻抗谐振器,提出了一种分布式印制差分低通滤波器,其中高阻抗传输线利用松耦合的差分线对实现,低阻抗传输线利用紧耦合的差分线对实现.为减小滤波器尺寸,高低阻抗传输线均以折叠线形式实现.作为示例,采用分布式印制方法,利用FR4三层印制电路板设计了低成本的差分低通滤波器,截止频率为3.5GHz,可有效覆盖高速数据采集终端的工作频率.该差分低通滤波器可应用于高速数据采集终端,解决高速采集和无线互联之间的互扰问题.
Distributed printed differential low-pass filters for data acquisition terminals
[Objective]In high-speed data acquisition terminals,differential lines are commonly employed to carry high-speed digital signals,enhancing anti-interference performance.However,mutual interference frequently occurs when high-speed acquisition terminals and wireless devices coexist.For instance,5G base stations and Gbps high-speed signal acquisition terminals in current 5G high-speed acquisition systems interfere with each other.This issue is addressed by installing electromagnetic interference(EMI)filters on a printed circuit board(PCB);however,EMI filters have disadvantages,including fixed frequency points and high cost,which hinder their practicability.In this work,a design method for a low-cost,easy-to-implement distributed printed differential low-pass filter is proposed based on a step impedance filter that can be designed using simple synthesis tools and applied to multilayer PCBs of various radiofrequency systems.[Methods]Based on a typical LC low-pass filter,step impedance resonators were introduced as a solution to high-frequency parasitic parameters and harmonic suppression.The high-and low-impedance transmission lines serve as an inductor and capacitor,respectively,realizing the transformation from a single-end LC filter to a single-end microstrip filter.Due to the common-mode suppression requirements of differential circuits,symmetrical design and equivalent processing were performed for conversion into a microstrip differential low-pass filter,where the high-impedance line is realized by loosely coupled differential lines and the low-impedance line is realized by tightly coupled differential lines.The larger the impedance difference between high and low impedance in the design,the more it contributes to reducing the filter size,and the device size can be further reduced by adhering to this principle.In addition,considering the influence of the transmission line on the ground impedance,an independent non-grounded pair of differential lines was selected for the design.The PCB board used FR4 with a dielectric constant of 4.2 and a multilayer structure with thicknesses of 0.127 mm and 0.508 mm for the two dielectric layers.The final dimensions were 22 mm X 16 mm.[Results]Simulation results showed that the distributed differential filter is a 0-3.5 GHz low-pass filter under ideal conditions.The pass band and return loss values were less than 0.5 dB and greater than 20 dB,respectively.Two baluns were added to the circuit design used for differential circuit measurement.Test results revealed that the balun possesses considerable interference of approximately 600 MHz,but the curve without the balun's influence is highly consistent with the simulated curve.The pass band and return loss values were<5 dB and<17 dB,respectively.[Conclusions]The findings of this work indicate that the method of using differential step impedance to realize a distributed printed filter based on a multilayer PCB board is feasible and can be effectively applied in high-speed data acquisition terminals as a solution to the mutual interference between high-speed acquisition and wireless interconnection.

stepped impedance resonatordifferential low-pass filterlow cost

刘金全、王骞、许剑、胡强、曾庆、巨乾宇

展开 >

国能大渡河大数据服务有限公司,成都 610041

清华四川能源互联网研究院,成都 610000

电子科技大学,成都 610000

阶梯阻抗谐振器 差分低通滤波器 低成本

四川省科技计划

2021YFG0113

2024

清华大学学报(自然科学版)
清华大学

清华大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.586
ISSN:1000-0054
年,卷(期):2024.64(1)
  • 1
  • 1
  • 1