首页|棱柱和M?bius梯的Tutte多项式

棱柱和M?bius梯的Tutte多项式

扫码查看
棱柱是圈Cn和路P2 的笛卡尔积,也可以看作两端连接的梯图.Möbius梯的结构与棱柱相似,可看作扭曲后两端连接的梯图,并且自然地嵌入Möb ius带.图的Tutte多项式是一个双变量多项式图不变量,通过对变量赋值或变换可以得到生成树数目、连通生成子图数目、色多项式和可靠多项式等许多图不变量.本文运用 Tutte多项式的删除-收缩运算,获得了棱柱和Möb ius 梯的Tutte多项式.
Tutte polynomials of prisms and M?bius ladders
A prism is a cartesian product of the cycle and the path can also be seen as a ladder graph connected at both ends.The structure of a Möbius ladder is similar to that of a prism,and can be seen as a twisted ladder graph connected at both ends,naturally embedded with straps.The Tutte polynomial of a graph is a bivariate polynomial graph invariant.By assigning or transforming variables,many graph invari-ants can be obtained,such as the number of spanning trees,the number of connected spanning subgraphs,chromatic polynomials,and reliability polynomials.This article uses the deletion-contraction operation of the Tutte polynomial to obtain the Tutte polynomials for prisms and Möbius ladders.

prismMöbius ladderTutte polynomial

吕江、赵海兴、邓波

展开 >

青海师范大学 数学与统计学院,青海 西宁 810016

青海师范大学 计算机学院,青海 西宁 810016

藏语智能信息处理及应用国家重点实验室,青海 西宁 810016

棱柱 Möbius梯 Tutte多项式

青海省自然科学基金项目111引智计划项目国家自然科学基金项目

2022-ZJ-T02D2003512261073

2024

青海师范大学学报(自然科学版)
青海师范大学

青海师范大学学报(自然科学版)

影响因子:0.333
ISSN:1001-7542
年,卷(期):2024.40(1)
  • 16