首页|丢番图方程x3+l=603y2的整数解

丢番图方程x3+l=603y2的整数解

扫码查看
设D含有6k+1型的素因子,其中k是正整数,关于丢番图方程x3+1=Dy2(D>0)的求解一直是数论中未彻底解决的问题之一.利用同余式、递归序列、因式分解法以及Pell方程解的性质及初等数论方法,并结合分类讨论的数学思想,研究了丢番图方程x3+1=603y2在不同情形下的整数解问题,得到了当D=603时,该丢番图方程有且仅有平凡整数解(x,y)=(-1,0),此结论对这一类方程的研究具有一定的借鉴作用.
Integer solution of Diophantine equation x3+1=603y2
Let D contain prime factors of type 6k+1,where k is a positive integer,the solution of the Diophantine equation x3+1=Dy2(D>0)has always been one of the unsolved topics in number theory.By using some elementary methods,such as congruence,recursive sequence,quartic Diophantine equation,factorization and the properties of the solutions to Pell equation,and combining with elementary number theory method and the mathematical idea of classification discussion,the integer solution of the Diophan-tine equation x3+1=603y2 in different cases is studied.It is obtained that when D=603,the Diophantine equation has only one integer solution(x,y)=(-1,0).The conclusion can promote the research of this kind of equation.

Diophantine equationinteger solutioncongruencerecursive sequence

沈秦豫、杨海、王成

展开 >

西安工程大学理学院,陕西西安 710048

丢番图方程 整数解 同余式 递归序列

2024

青海师范大学学报(自然科学版)
青海师范大学

青海师范大学学报(自然科学版)

影响因子:0.333
ISSN:1001-7542
年,卷(期):2024.40(3)