首页|基于无人机多源影像数据预测的高寒地区燕麦和豌豆混播生产性能综合评价

基于无人机多源影像数据预测的高寒地区燕麦和豌豆混播生产性能综合评价

扫码查看
本研究通过在青海省海北藏族自治州(以下简称"海北州")地区建植不同混播比例的燕麦+豌豆混播草地,分析不同混播草地的种间关系和饲草产量,评价并筛选青海省海北州地区最佳燕麦+豌豆混播比例.通过采集无人机多源影像数据,利用主成分分析和隶属函数法,从不同光谱指数中筛选适用于草地产量估算的指标,以有效提升草地牧草产量估算效率.结果表明:当混播比例为5∶5时,混播草地中燕麦和豌豆均受到促进作用,可获得最高的牧草干草产量.此外,利用无人机搭载多功能成像仪采集多源影像是高效预测禾豆混播草地牧草产量的有效方法.利用REDVI、MSAVI、DVI、RVI、MNDI和NDRE光谱指数构建的牧草产量综合度量值(D)可用于预测评价混播草地的牧草产量.
The Comprehensive Evaluation of Oat and Pea Intercropping Performance in High-altitude Regions Based on Multi-source UAV Image Data Prediction
Oats(Avena sativa)and peas(Pisum sativum)are nutritious and palatable,serving as important winter forage for livestock in the cold high-altitude regions of the Qinghai-Tibet Plateau.However,the suitable proportion of intercropping oats and peas varies due to differences in soil,bioclimate conditions,and management levels.Traditional estimation methods of grassland forage yield are time-consuming,labor-intensive,destruc-tive,and challenging to scale up from single points to regional scales.Therefore,this study conducted in Haibei Prefecture,Qinghai Province,established oat and pea intercropping grasslands with different mixing ratios.By ana-lyzing the interspecific relationships and forage yield of different intercropped grasslands,the optimal oat and pea intercropping ratio in Haibei Prefecture was evaluated and selected.Utilizing multi-source UAV image data,prin-cipal component analysis,and membership function method,this study aimed to identify spectral indices suitable for estimating grassland yield,thereby enhancing the efficiency of grassland forage yield estimation.The results of this study indicate that a 5∶5 intercropping ratio enhances both oats and peas in intercropped grasslands,resulting in the highest dry forage yield.Furthermore,using a UAV equipped with a multi-functional imaging sensor to col-lect multi-source images is an effective method for efficiently predicting grassland forage yield in oat-pea inter-cropped grasslands.Spectral indices such as REDVI,MSAVI,DVI,RVI,MNDI,and NDRE can be utilized to predict and evaluate forage yield in intercropped grasslands.

Mixed sowing of rice beansOatsPeasComprehensive evaluationUAV multi-source image data

马晓涓、王维英、张晓娟、才让卓玛、马祥、李思达、刘凯强

展开 >

海北藏族自治州高原生态畜牧业科技示范园管委会,青海 海晏 812200

青海省畜牧兽医科学院,青海 西宁 810016

禾豆混播 燕麦 豌豆 综合评价 无人机多源影像数据

山东省援青技术研发项目

SDYQ2022-32

2024

青海畜牧兽医杂志
青海省畜牧兽医学会 青海省畜牧兽医科学院

青海畜牧兽医杂志

影响因子:0.196
ISSN:1003-7950
年,卷(期):2024.54(5)