首页|基于随机森林特征选择的BiLSTM电解槽出铝量预测

基于随机森林特征选择的BiLSTM电解槽出铝量预测

扫码查看
铝电解槽出铝量需要凭借专家经验对槽况的判断,其经验水平决定了出铝量决策的准确度.针对电解槽出铝量预测问题,本文提出了一种基于随机森林(RF)特征选择的RF-BiLSTM电解槽出铝量预测模型.所用模型在BiL-STM模型的基础上,利用随机森林算法对输入BiLSTM模型的特征进行降维处理,并将优化后的特征进行不同模型的对比实验.实验结果表明,与LSTM方法相比,RF-BiLSTM平均绝对误差(MAE)减少21.01,该方法优于现有方法.为铝电解槽出铝量预测问题提供了一定的参考价值.
Prediction of aluminum yield from BiLSTM aluminum reduction pots based on random forest feature selection
The aluminum yield from aluminum reduction pots requires the judgment of pot conditions based on expert experience,and the experience level determines the accuracy of the aluminum yield decision.With respect to the prediction of aluminum yield from aluminum reduction pots,this paper propo-ses a prediction model for aluminum yield from RF-BiLSTM aluminum reduction pots based on random forest(RF)feature selection.Based on the BiL-STM model,the random forest algorithm is used to reduce the dimensionality of features which are entered the BiLSTM model,and the optimized features are compared with different models.The experimental results show that compared with the LSTM method,the mean absolute error(MAE)of RF-BiL-STM is reduced by 21.01,which is better than the existing method,thus providing a certain reference value for the prediction of aluminum yield from alu-minum reduction pots.

aluminum electrolysisaluminum yield predictionrandom forestBiLSTM

孙少聪、徐杨、曹斌

展开 >

贵州大学 大数据与信息工程学院,贵州 贵阳 550025

中铝智能科技发展有限公司,浙江 杭州 311100

铝电解 出铝量预测 随机森林 BiLSTM

贵州省科学技术基金资助项目

黔科合基础-ZK[2021]重点001

2023

轻金属
沈阳铝镁设计研究院

轻金属

影响因子:0.358
ISSN:1002-1752
年,卷(期):2023.(10)
  • 11