首页|融合GNSS、ERA5、大气污染物的PM2.5浓度预测研究

融合GNSS、ERA5、大气污染物的PM2.5浓度预测研究

扫码查看
冬春季节的空气质量预测有助于公众合理安排出行和政府相关部门的交通治理.细颗粒物(PM2.5)的浓度主要影响因素有大气污染物、水汽等.为提高PM2.5 浓度预测的精度,以京津冀地区为例,利用快速傅里叶变换(fast Fourier transform,FFT)与长短期记忆(long short term memory,LSTM)神经网络方法相结合,考虑GNSS、ERA5 水汽、大气污染物等观测要素,构建PM2.5 的浓度预测模型,预测研究未来 24h的PM2.5 的浓度.利用GNSS水汽校正区域ERA5 水汽,并进行精度评定.利用FFT取大气污染物、第五代大气再分析产品(ECMWF atmospheric reanalysis 5,ERA5)水汽等观测要素的公共变化周期,获得最佳公共周期为 78 h;选取最佳公共周期长度的各类要素作为模型输入,24 h序列的PM2.5 浓度作为模型输出.通过均方根误差(root mean square error,RMSE)评价指标进行模型精度评价.研究结果表明:基于GNSS的ERA5 水汽校正模型在秋冬季节ERA5 水汽精度优于 2 mm.FFT-LSTM模型预测精度在平原地区、山地地区和高原地区为 10.22 μg/m3、8.56 μg/m3 和 9.02 μg/m3,预测时效达到 24 h.可有效预测未来 24h的PM2.5 浓度.该模型可为相关部门大气污染治理提供参考.
Study on PM2.5 concentration prediction by integrating GNSS,ERA5 PWV,and atmospheric pollutants
The prediction of air quality during the winter and spring seasons can be used for the public to make reasonable arrangements for travel and traffic management by relevant government departments.The main influencing factors of PM2.5 concentration include atmospheric pollutants,precipitable water vapor(PWV),etc.To improve the accuracy of PM2.5 concentration prediction,taking Beijing-Tianjin-Hebei region as an example,it was combined fast Fourier transform(FFT)and LSTM neural network methods,considered observation elements such as GNSS,ERA5 PWV,and atmospheric pollutants,and constructed the PM2.5 concentration prediction model to predict the concentration of PM2.5 in the next 24 hours.It was used GNSS PWV to correct the ERA5 PWV in the region and evaluated the accuracy.The public change period of air pollutants,ERA5 PWV and other observation elements are extracted by FFT,and the optimal public period is 78 hours;Select various factors with the best common cycle length as the model input,and the PM2.5 concentration of the 24 hour sequence as the model output.Evaluate model accuracy through RMSE evaluation indicators.The research results are indicated that the accuracy of ERA5 PWV correction model based on GNSS is better than 2 mm in autumn and winter seasons.The prediction accuracy of the FFT-LSTM model is 10.22 μg/m3 in plain,8.56 μg/m3 in mountainous,and 9.02 μg/m3 in plateau regions,while the predicted time limit of 24 hours.It can effectively predict the PM2.5 concentration in the next 24 hours.This model can provide reference for relevant departments in air pollution control.

PM2.5atmospheric pollutantsGNSS PWVERA5 PWVFFTLSTM

刘严萍、司甜、毕慧丽、张曼琪、王勇、许祖豪

展开 >

天津城建大学经济与管理学院,天津 300384

天津城建大学地质与测绘学院,天津 300384

细颗粒物(PM2.5) 大气污染物 GNSS水汽 ERA5 水汽 快速傅里叶变换(FFT) 长短期记忆(LSTM)

天津市教委科研项目国家级大学生创新创业训练计划

2021ZD001202310792010

2024

全球定位系统
中国电波传播研究所

全球定位系统

影响因子:0.462
ISSN:1008-9268
年,卷(期):2024.49(2)
  • 17