首页|粒子群优化下物联网多节点异常定位方法仿真

粒子群优化下物联网多节点异常定位方法仿真

扫码查看
为了改善物联网节点异常定位的准确性和效率,提高物联网体系的安全性,提出一种粒子群优化下物联网多节点异常定位方法.在设定物联网节点数据的基础上构建目标函数,获取粒子适应度向量;通过控制混沌向量扰动的方式得到最佳粒子方位,更新粒子群历史最优解;利用函数计算物联网节点粒子通信效率有效值,完成物联网多节点异常定位.实验结果表明,所提方法定位准确性较高,异常节点定位准确率高于95%;定位延时较短,1.5 ms可完成3 000个物联网节点检测;定位稳定性较优,在500次实验内均可稳定给出结果,准确率98.5%.
Simulation of the multi-node anomalous localization method of the Internet of Things under particle swarm optimization
In order to improve the accuracy and efficiency of abnormal location of Internet of Things nodes and improve the security of Internet of Things system,a multi-node abnormal location method of Internet of Things based on particle swarm optimization was proposed.Construct an objective function on the basis of setting the node data of the Internet of Things,and obtain a particle fitness vector.The optimal particle orientation is obtained by controlling the chaos vector disturbance,and the historical optimal solution of particle swarm is updated.The kernel function is used to calculate the effective value of particle communication efficiency of Internet of Things nodes,and the multi-node anomaly location of Internet of Things is completed.The experimental results show that the positioning accuracy of the proposed method is high,and the positioning accuracy of abnormal nodes is higher than 95%.The positioning delay is short,and 3000 IoT nodes can be detected in 1.5 ms.The positioning stability is good,and the results can be given stably within 500 experiments,and the accuracy rate reaches 98.5%.

particle swarm algorithmInternet of Thingsmulti-node anomalynode location method

吕文官、薛峰

展开 >

安徽工业经济职业技术学院信息发展处,安徽合肥 230051

合肥工业大学计算机与信息学院,安徽合肥 230601

粒子群算法 物联网 多节点异常 节点定位方法

2020年度安徽高校自然科学研究重点项目

KJ2020A1055

2024

齐齐哈尔大学学报(自然科学版)
齐齐哈尔大学

齐齐哈尔大学学报(自然科学版)

影响因子:0.182
ISSN:1007-984X
年,卷(期):2024.40(2)